Konfigurations- und Bedienungsanleitung P/N 3600209, Rev. EB April 2012

Micro Motion[®] Auswerteelektronik Modell 2700 für FOUNDATION[™] Fieldbus

Konfigurations- und Bedienungsanleitung

©2012, Micro Motion, Inc. Alle Rechte vorbehalten. Das Micro Motion und Emerson Logo sind Marken von Emerson Electric Co. Micro Motion, ELITE, MVD, ProLink, MVD Direct Connect und PlantWeb sind Marken eines Unternehmens von Emerson Process Management. Alle anderen Marken sind Eigentum der jeweiligen Besitzer.

Inhalt

Kapitel 1	Einführung						
•	1.1	Übersicht	1				
	12	Sicherheit	1				
	1.3	Bestimmung der Geräteversionen	1				
	14	Dokumentation des Durchflussmessers	2				
	1.5	Kommunikationsmittels	2				
	1.0	Out-of-Service-Modus	2				
	1.0	Planen der Konfiguration					
	1.7	Micro Motion Kundenservice					
	1.0						
Kapitel 2	Inbe	etriebnahme	5				
-	2.1	Übersicht	5				
	2.2	Spannungsversorgung einschalten.	5				
	2.3	Kanäle des Function Blocks zuordnen	6				
	2.4	Konfigurieren des Integrator Function Blocks					
	2.5	Konfigurieren der Druckkompensation					
		2.5.1 Druckkompensationswerte					
		2.5.2 Aktivieren der Druckkompensation					
		2.5.3 Konfigurieren einer Druckguelle	12				
	2.6	Konfigurieren der Temperaturkompensation.					
		2.6.1 Aktivieren der externen Temperaturkompensation					
		2.6.2 Konfigurieren einer Temperaturguelle					
	2.7	Nullpunktkalibrierung des Durchflussmessers					
		2.7.1 Vorbereitung auf die Nullpunktkalibrierung					
		2.7.2 Nullpunktkalibrierung					
		2.7.3 Wiederherstellen der Nullpunkte	20				
Kanital 2	Kali	hriorung	22				
καμιτεί σ	naii		23				
	3.1	Ubersicht	23				
	3.2	Charakterisierung, intelligente Systemverifizierung,					
		Systemvalidierung und Kalibrierung	23				
		3.2.1 Charakterisierung	24				
		3.2.2 Intelligente Systemverifizierung	24				
		3.2.3 Systemvalidierung und Gerätefaktoren	24				
		3.2.4 Kalibrierung	24				
		3.2.5 Vergleich und Empfehlungen	25				
	3.3	Durchführen der Charakterisierung.	26				
		3.3.1 Parameter der Charakterisierung	26				
		3.3.2 Charakterisierung	29				
	3.4	Durchführen der intelligenten Systemverifizierung	30				
		3.4.1 Vorbereiten auf die intelligente Systemverifizierung	30				
		3.4.2 Durchführen des intelligenten Systemverifizierungstests	31				
		3.4.3 Lesen und Interpretieren der Ergebnisse der intelligenten					
		Systemverifizierung	36				
		3.4.4 Einrichten der automatischen oder fernausgelösten					
		Ausführung der intelligenten Systemverifizierung	41				

	3.5	Durchführen der Sensorvalidierung 43
	3.6	Durchführen der Dichtekalibrierung 45
		3.6.1 Vorbereiten auf die Dichtekalibrierung
		3.6.2 Vorgehensweise zur Dichtekalibrierung
	3.7	Durchführen der Temperaturkalibrierung 51
Kapitel 4	Konf	iguration
	4.1	Ubersicht
	4.2	Konfigurationsübersicht 53
	4.3	Konfigurieren der Standard-Volumendurchflussmessung für Gas 54
		4.3.1 Konfigurieren der Gasdichte 55
	4.4	Ändern der Messeinheiten 57
	4.5	Erstellen von Spezial-Messeinheiten 63
	4.6	Konfigurieren der Mineralölmessungs-Anwendung (API)
		4.6.1 Über die Anwendung der Mineralölmessung 66
		4.6.2 Konfigurationsverfahren 68
	4.7	Konfigurieren der Anwendung Konzentrationsmessung
		4.7.1 Über die Anwendung der Konzentrationsmessung 71
		4.7.2 Konfigurationsverfahren
	4.8	Ändern der Linearisierung
	4.9	Ändern der Ausgangsskalierung
	4.10	Ändern der Prozessalarme
		4.10.1 Alarmwerte
		4.10.2 Alarmprioritäten
		4.10.3 Alarmhysterese
	4.11	Konfigurieren der Status-Alarmstufe 79
	4.12	Ändern der Dämpfungswerte 81
		4.12.1 Dämpfung und Volumenmessung
	4.13	Ändern der Schwallstromgrenzen und -dauer
	4.14	Konfigurieren von Abschaltungen 85
		4.14.1 Abschaltungen und Volumendurchfluss
	4.15	Ändern des Parameters Flow Direction
	4.16	Ändern der Geräteeinstellungen
	4.17	Konfigurieren der Sensorparameter
	4.18	Ändern der Bedieninterface-Funktionen
		4.18.1 Aktivieren und Deaktivieren der Bedieninterface-Funktionen
		4.18.2 Ändern der Bildlaufrate
		4.18.3 Ändern der Aktualisierungsperiode
		4.18.4 Ändern des Display-Passworts
		4.18.5 Ändern der Displayvariablen und Anzeigegenauigkeit
		4.18.6 Ändern der Bedieninterface-Sprache
	4.19	Konfigurieren des Schreibschutz-Modus 102
	4.20	Aktivieren der LD-Optimierung 105
Kanilal F	D - 1!	ah 407
Kapitel 5	Betli	ep
	5.1	Übersicht
	5.2	Anzeigen von Prozessvariablen 107
		5.2.1 Anzeigen der API-Prozessvariablen 108
		5.2.2 Anzeigen der Konzentrationsmessungs-Prozessvariablen 109
	5.3	Simulationsmodus
		5.3.1 Feldbus-Simulationsmodus 110
		5.3.2 Sensor-Simulationsmodus 110

	5.4	Reagier	en auf Alarme	111
		5.4.1	Ansehen von Alarmen	111
		5.4.2	Bestätigen von Alarmen.	114
	5.5	Verwend	den der Summenzähler und Gesamtzähler	115
		5.5.1	Anzeigen der Summenzähler und Gesamtzähler	115
		5.5.2	Steuern der Summenzähler und Gesamtzähler	117
Kapitel 6	Stör	unasana	lvse und -beseitiauna	121
	61	Ühersici	ht	121
	6.2	L pitfado	n zur Störungsanalvse und "beseitigung	121
	63	Auswort	n zur Störungsanaryse und -beseingung	120
	0.3 6.4	Auswert		100
	0.4			100
	C F	0.4.1 Nullound		100
	0.0			100
	0.0			123
	6.7	Ausgan		123
		6.7.1		127
		6.7.2		127
		6.7.3		12/
		6.7.4	Charakterisierung.	127
		6.7.5	Kalibrierfehler	127
		6.7.6	Feldbus-Netzwerk Power Conditioner	128
		6.7.7	Linearisierung	128
	6.8	EEPRO	M-Prüfsummenfehler	128
	6.9	Statusal	larme	128
	6.10	Diagnos	stizieren von Verdrahtungsproblemen	132
		6.10.1	Prüfen der Verdrahtung der Spannungsversorgung	132
		6.10.2	Prüfen der Verdrahtung zwischen Sensor und Auswerteelektronik	133
		6.10.3	Überprüfen der Erdung	133
		6.10.4	Prüfen der Kommunikationsverdrahtung	133
	6.11	Prüfen a	auf Schwallströmung	134
	6.12	nerstellen einer funktionierenden Konfiguration	134	
	6.13	Prüfen o	der Testpunkte	135
		6.13.1	Abfragen der Testpunkte	135
		6.13.2	Auswerten der Testpunkte	135
		6.13.3	Übermäßige Antriebsverstärkung	136
		6.13.4	Sprunghafte Antriebsverstärkung	. 137
		6.13.5	Niedrige Aufnehmerspannung	. 137
	6.14	Prüfen o	des Core-Prozessors	138
	0	6 14 1	Zugriff auf den Core-Prozessor	138
		6 14 2	Prüfen der Core-Prozessor-I FD	139
		6 14 3	Core-Prozessor-Widerstandstest	141
	6 15	Drüfen o	ter Sensorspulen und Widerstandstbermometer	1/12
	0.15	6 15 1	Externe Installation mit 0 Leitern oder externer	
		0.10.1	Coro-Prozossor mit oxtornor Auswortooloktronik	1/2
		6.15.2	Externe Installation mit 4 Leitern oder integrierte Installation	143
Anhora A	Diam	****		140
Annany A	rian	INNED-AI	ariiie	149
	A.1	Einführu	Ing in PlantWeb-Alarme	149
	A.2	Setzen	von PlantWeb-Alarmen	149
	A.3	Verwend	den von PlantWeb-Alarmen	152

Inhalt

Anhang B	Modell 2700 Transducer Blocks – Referenz 1						
	B.1	Übersicht	. 159 . 159				
	B.2	MEASUREMENT Transducer Block Parameter	. 159				
	B.3	CALIBRATION Transducer Block Parameter	. 168				
	B.4	DIAGNOSTICS Transducer Block Parameter	. 173				
	B.5	DEVICE INFORMATION Transducer Block Parameter	. 188				
	B.6	LOCAL DISPLAY Transducer Block Parameter	. 191				
	В.7 В.8	CONCENTRATION MEASUREMENT Transducer Block Parameter	. 196 . 200				
Anhang C	Mod	ell 2700 Resource Block – Referenz	207				
Ū	C.1	Resource Block Parameter	. 207				
	C.2	Resource Block Anzeigen	. 219				
Anhang D	Durc	hflussmesser, Installationsarten und Komponenten	223				
	D.1	Übersicht	. 223				
	D.2	Installationsschemata	. 223				
	D.3	Komponentenschemata	. 223				
	D.4	Verdrahtungs- und Anschlussschemata	. 223				
Anhang E	Verb	indung mit einem Handterminal	229				
	E.1	Übersicht	. 229				
	E.2	Anzeige der Gerätebeschreibungen	. 229				
	E.3	Anschluss an eine Auswerteelektronik	. 229				
Anhang F	Verb	indung mit ProLink II oder Pocket ProLink Software	231				
	F.1	Übersicht	. 231				
	F.2	Anforderungen	. 231				
	F.3	ProLink II, Upload/Download von Konfigurationen	. 232				
	⊢.4	Anschluss zwischen PC und Auswerteelektronik Modell 2700	. 232				
	F.5	ProLink II Sprache	. 232				
Anhang G	Verv	venden des Bedieninterface	235				
	G 1		235				
	G 2	Komponenten	235				
	G.3	Gebrauch der optischen Tasten	. 235				
	G.4	Verwenden des Bedieninterface	. 236				
		G.4.1 Displaysprache	. 236				
		G.4.2 Anzeigen von Prozessvariablen	. 236				
		G.4.3 Verwenden der Displaymenüs.	. 237				
		G.4.4 Bedieninterface-Passwort	. 237				
		G.4.5 Eingeben von Fließkommawerten mit dem Bedieninterface	. 238				
	G.5	Ankuizuiiyeii	. 240				

Inhalt

Anhang H	NE53	3 Historie	ļ
	H.1 H.2	Übersicht	
Stichwortve	erzeicl	nnis	1

Konfiguration

Kapitel 1 Einführung

1.1 Übersicht

Dieses Kapitel ist eine Orientierungshilfe für den Gebrauch dieser Betriebsanleitung und umfasst ein Konfigurationsdatenblatt. Diese Betriebsanleitung beschreibt die erforderlichen Vorgehensweisen für Inbetriebnahme, Konfiguration, Betrieb, Wartung sowie Störungsanalyse/-beseitigung der Micro Motion[®] Auswerteelektronik Modell 2700 mit FOUNDATION[™] Fieldbus.

1.2 Sicherheit

Zum Schutz von Personal und Geräten finden Sie in der gesamten Betriebsanleitung entsprechende Sicherheitshinweise. Lesen Sie diese Sicherheitshinweise sorgfältig durch, bevor Sie mit dem nächsten Schritt fortfahren.

1.3 Bestimmung der Geräteversionen

Tabelle 1-1 stellt dar, wie Sie die Informationen zur Version von Auswerteelektronik, Core-Prozessor, Micro Motion ProLink[®] III Version 1.1, ProLink[®] II Patch 9854 und Handterminal abrufen können. Wenn nichts Anderes angegeben ist, beziehen sich die Anweisungen in dieser Betriebsanleitung auf die Auswerteelektronik Firmware Version 7.0 oder höher. Zusätzlich setzen viele Vorgehensweisen voraus, dass Ihre Auswerteelektronik an einem Core-Prozessor mit erweiterter Funktionalität angeschlossen ist. Wenn Ihre Auswerteelektronik nicht an einem Core-Prozessor mit erweiterter Funktionalität angeschlossen ist, kann es sein, dass einige Vorgehensweisen abweichen oder nicht verfügbar sind.

Komponente	Mit ProLink II	Mit Feldbus-Host	Mit Bedieninterface
Auswerteelektronik-Fir mware	View > Installed Options > Software Revision	DEVICE INFO block > Revision Numbers > 2000 Series SW Rev	OFF-LINE MAINT > VER
Core-Prozessor-Firm ware	Nicht verfügbar	DEVICE INFO block > Revision Numbers > Core Prozessor SW Rev	OFF-LINE MAINT > VER
ProLink II	Help > About ProLink II	Entfällt	Entfällt
ProLink III	Help > About ProLink III	Entfällt	Entfällt
Handterminal-Geräteb eschreibung	Entfällt	Siehe Abschnitt E.2	Entfällt

Tabelle 1-1. Informationen zur Version

Einführung

1.4 Dokumentation des Durchflussmessers

Tabelle 1-2 enthält Angaben zu Dokumenten, in denen Sie weitere Informationen finden.

Tabelle 1-2.	Dokumentation des Du	ırchflussmessers
--------------	----------------------	------------------

Thema	Dokument
Installation des Sensors	Sensor-Installationsanleitung
Installation der Auswerteelektronik	Micro Motion Auswerteelektronik Modell 1700 und Modell 2700: Installationsanleitung
FOUNDATION Fieldbus Function Block Referenzdokumentation	FOUNDATION Fieldbus Blocks (verfügbar auf der Rosemount Website http://www.rosemount.com)

1.5 Kommunikationsmittels

Die meisten in dieser Betriebsanleitung beschriebenen Vorgehensweisen erfordern die Verwendung eines Kommunikationsmittels. Auf drei Kommunikationsmittel wird in dieser Betriebsanleitung verwiesen:

 Feldbus-Host – Es gibt eine Reihe verfügbarer Feldbus-Hostsysteme. In dieser Betriebsanleitung wird vorausgesetzt, dass das Handterminal der Host ist. Andere Hostsysteme wie DeltaV, bieten eine ähnliche Funktionalität wie das Handterminal. Grundlegende Informationen über das Handterminal finden Sie im Anhang E. Weitere Informationen finden Sie in der Dokumentation des Handterminals, verfügbar online unter www.fieldcommunicator.com.

Alle Feldbus-Hostsysteme erfordern entsprechende Device-Deskriptor-Dateien (DD, Gerätebeschreibung), um mit der Auswerteelektronik zu kommunizieren sowie diese zu konfigurieren. Diese Betriebsanleitung setzt voraus, dass die Feldbus-Hostsysteme DDs für die Geräteversion 7.0 verwenden. DD-Dateien finden Sie im Produktbereich auf der Micro Motion Website (www.micromotion.com).

• *ProLink II* – Grundlegende Informationen über ProLink II finden Sie im Anhang F. Weitere Informationen finden Sie in der ProLink II Betriebsanleitung, verfügbar auf der Micro Motion Website (www.micromotion.com).

Die Anweisungen in dieser Betriebsanleitung beziehen sich auf ProLink III Version 1.1, ProLink II v2.91 oder höher.

• *Bedieninterface* – Grundlegende Informationen über die Verwendung des Bedieninterface finden Sie im Anhang G.

1.6 Out-of-Service-Modus

Feldbus Function Blocks müssen in den *Out-of-Service* (O/S) Modus gesetzt werden, bevor Sie deren Parameter modifizieren können. Die Vorgehensweisen in dieser Betriebsanleitung setzen voraus, dass die Function Blocks, falls erforderlich, vor Beginn der Vorgehensweise in den O/S-Modus gesetzt wurden und dass diese nach Beendigung der Vorgehensweise wieder zurück auf Service (d. h. *Auto*-Modus) gesetzt werden.

ProLink II handhabt die Function Block Modi automatisch.

Einführung

1.7 Planen der Konfiguration

Das ISA-Konfigurationsdatenblatt am Ende dieses Kapitels bietet Platz für die Aufzeichnung von Informationen über Ihren Durchflussmesser (Auswerteelektronik mit Sensor) und Ihre Anwendung. Diese Informationen benötigen Sie bei den Konfigurationsarbeiten aus dieser Betriebsanleitung. Füllen Sie das Konfigurationsdatenblatt aus und verwenden es während der Konfiguration. Möglicherweise müssen Sie andere Abteilungen (Personal, das an der Installation der Auswerteelektronik oder im Anwendungsprozess arbeitet) konsultieren, um die benötigten Informationen zu erhalten.

1.8 Micro Motion Kundenservice

Der Kundenservice ist unter folgenden Telefonnummern erreichbar:

- U.S.A.: **800-522-MASS** (800-522-6277) (gebührenfrei)
- Kanada und Lateinamerika: +1 303 527 5200
- Asien:
 - Japan: +3 5769-6803
 - An anderen Standorten: +65 6777-8211 (Singapur)
- Europa:
 - Großbritannien: 0870 240 1978 (gebührenfrei)
 - An anderen Standorten +31 (0) 318 495 555 (Niederlande)

Kunden außerhalb U.S.A. können den Micro Motion Kundenservice per E-Mail unter *flow.support@emerson.com* erreichen.

			FIELDBUS INSTRUMENT DATA SHEET				SHEET		OF REV			
N/II	antina anti				NO	BY	DATE	REVISION	CONTRA). CT	DATE	
INHER	ЭЛ	AOLIOI		\checkmark						_		
	annov	Trongs .	FOUND	ATION					REQ P.0	0.		
									BY	CHK'D	APPR.	
	1	Meter Tag	No.									
	2	Service										
	3	Location										
	4	Loodalon	Calibrated Flow	Range, Units								
	5 6		Max Velocity, Ur	nits Max Flow					Operating	Flow		
	7		Min. Pressure	Max. Pressure					Operating	Press.		
	8		Min. Temp.	Max. Temp.					Operating	Temp.		
	9 10		Velocity (max)	Density (max)								
	11		Dia a Matavial									
	12 13	PIPE	Pipe Material Pipe Size Upstre	eam/Dnstream								
	14	DATA	Schedule									
	15 16		Special Insulator	r rtions								
	17		Approval									
	18 10		Wetted Parts	Iroov @ Mox								
	20		Density Accurac	y @ All Rates								
	21		Pressure Drop (@ Max Flow								
	22 23	SENSOR	Call Rate	Cal. Units								
OPERATING	24		Custom Calibrat	ion Points			1					
CONDITIONS	25 26		Dens. for Vol.to	Mass Conv. Totalizer Text								
	27		Base Flow Unit	Base Time Unit								
	28 20		Conversion Fact	tor								
	30		Instrument Tag	Number								
	31		Transmitter Style									
	32 33		Dens. Unit	Temp. Unit								
	34		Display	· · · ·								
	35 36		Conduit Adapter	S								
	37		Туре		Electronic r	microproce	ssor based	ł				
	38 39	TRANS.	Input Signal Baud Rate		FOUNDATIO	N fieldbus™ S	MH1 ISA.5	0.02 IEC-61	158			
	40		Physical Media		Twisted pai	ir wires, (H	1) complia	nt				
	41 42		Power Supply	FF Bus	9–32 VDC, 11 5 million	bus power	ed, 4 wires	6				
	42		Input Voltage	TT Dus	Model 2700	D: 18–100 \	/DC or 85-	-265 VAC				
	44		Device Class		Link maste	r	ITK 4.60 ı	ninimum				
	45 46		Electrical Class		FISCO		Other					
	47	Device Fur	nction Block Fixed	d Type	FOUNDATIO	N fieldbus™	FF-891/F	F-892 com	oliant		·	
	48 49	Resource I Transduce	ыоск (КВ) r Block (TB)									
	50	Analog Inp	ut Block (AI)		Exec. time		18 ms					
	51 52	Analog Ou Discrete In	tput Block (AO)		Exec. time		18 ms					
FUNCTION BLOCKS	53	Discrete ou	utput Block		Exec. time		16 ms					
DECONO	54 55	PID Block	(PID) Block (INT)		Exec. time		20 ms					
	56	Instantiable	e Function Blocks	3	Model 2700	D: DO/DI	10 1115				1	
	F7	Tropoduce	r Plook Turs		Measureme	ent TB			Calibration	n TB	D	
	57	Transduce	гысск туре		Enhanced I	ay i B Density TB			API TB	ormation I	D	
DIAGNOSTICS	DIAGNOSTICS 58 Diagnostic TB											
1 – The vendor	must	t provide the	e Device Descript	ion accordina wit	h the firmwa	re revision	of the field	device.	FOR R	EFERENC	E ONLY. NOT FOR	
2 – It is mandat	ory to	provide the	e Capability Form	at File for each ty	pe of device	e.				ISS	SUE.	
3 – All devices	must	show FOUN	DATION [™] logo.									

Configuration

Kapitel 2 Inbetriebnahme

2.1 Übersicht

Dieses Kapitel beschreibt die Vorgehensweise zur ersten Inbetriebnahme des Durchflussmessers. Sie müssen diese Schritte nicht bei jedem neuen Start des Durchflussmessers ausführen.

Die Vorgehensweisen in diesem Kapitel ermöglichen Ihnen:

- Einschalten der Spannungsversorgung des Durchflussmessers (Abschnitt 2.2).
- Prüfen und im Bedarfsfall Ändern der Kanäle des Analog Input (AI) Function Blocks (Abschnitt 2.3)
- Zuordnen und im Bedarfsfall Konfigurieren des Modus des Integrator (INT) Function Blocks (Abschnitt 2.4)
- Konfigurieren der Druckkompensation (optional) (Abschnitt 2.5)
- Konfigurieren der Temperaturkompensation (optional) (Abschnitt 2.6)
- Nullpunktkalibrierung des Durchflussmessers (optional) (Abschnitt 2.7)
- 1. Prüfen und im Bedarfsfall Ändern der Kanäle des Analog Output (AO) Function Blocks (Abschnitt 2.3)
- 2. Prüfen und im Bedarfsfall Ändern der Kanäle des Discrete Input (DI) Function Blocks (Abschnitt 2.3)
- 3. Prüfen und im Bedarfsfall Ändern der Kanäle des Discrete Output (DO) Function Blocks (Abschnitt 2.3)

Anmerkung: Alle Vorgehensweisen in diesem Kapitel gehen davon aus, dass Sie eine Kommunikation mit der Auswerteelektronik hergestellt haben und dass Sie alle Sicherheitsanforderungen einhalten. Siehe Anhang E und F.

2.2 Spannungsversorgung einschalten

Vor dem Einschalten der Spannungsversorgung des Durchflussmessers schließen Sie alle Gehäusedeckel fest.

A WARNUNG

Der Betrieb des Durchflussmessers ohne geschlossene Gehäusedeckel stellt eine elektrische Gefahrenquelle dar, die zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen kann.

Stellen Sie sicher, dass die Sicherheitsabtrennung vorhanden ist und die Gehäusedeckel für Feldverdrahtung, Elektronikraum, Elektronikmodule und das Gehäuse richtig geschlossen sind, bevor Sie die Spannungsversorgung der Auswerteelektronik einschalten.

Schalten Sie die Spannungsversorgung ein. Der Durchflussmesser führt automatisch Diagnoseprogramme aus. Wenn die Auswerteelektronik über ein Bedieninterface verfügt, leuchtet die Status-LED grün und beginnt zu blinken, nachdem die Diagnose beim Hochfahren beendet ist.

Anmerkung: Wenn dies die erste Inbetriebnahme ist oder die Spannungsversorgung so lange ausgeschaltet war, dass die Komponenten die Umgebungstemperatur angenommen haben, kann der Durchflussmesser ca. eine Minute nach Einschalten mit der Prozessmessung beginnen. Jedoch kann es bis zu zehn Minuten dauern, bis die Elektronik thermisch im Gleichgewicht ist. Während dieser Warmlaufphase kann es sein, dass Sie geringfügige Instabilitäten oder Ungenauigkeiten der Messung feststellen.

2.3 Kanäle des Function Blocks zuordnen

Die vier AI Function Blocks und der AO Function Block sollten jeweils einem Kanal des Transducer Blocks zugeordnet werden. Die voreingestellte Kanalkonfiguration für jeden Block ist in Tabelle 2-1 dargestellt.

Block	Voreingestellter Kanal	Einheit	
AI 1	1 (Massendurchfluss)	g/s	
AI 2	2 (Temperatur)	٦°	
AI 3	3 (Dichte)	g/cm ³	
AI 4	4 (Volumendurchfluss)	l/s	
AO	6 (Druck)	psi	
AO	7 (Temperatur)	°C	
DO	8 (Start Sensor-Nullpunktkalibrierung)		
DI	9 (Anzeige Vorwärts/Rückwärts)		

Tabelle 2-1. Voreingestellte Kanalkonfiguration

Wenn Sie die Kanalkonfiguration ändern wollen, müssen Sie einen Feldbus-Host verwenden. Siehe Abbildung 2-1 und Tabelle 2-2.

Abbildung 2-1 Zuordnen von Function Block Kanälen – Feldbus-Host

Einführung

Kanalnummer	Prozessvariable	Function Block
1	Mass Flow	Analog Input
2	Temperature	Analog Input
3	Density	Analog Input
4	Volume Flow	Analog Input
5	Drive Gain	Analog Input
6	Pressure	Analog Output
7 ⁽¹⁾	API Corr Density	Analog Input
8 ⁽¹⁾	API Corr Volume Flow	Analog Input
9 ⁽¹⁾	API Avg Corr Density	Analog Input
10 ⁽¹⁾	API Avg Corr Temp	Analog Input
11 ⁽¹⁾	API CTL	Analog Input
12 ⁽²⁾	ED Ref Density	Analog Input
13 ⁽²⁾	ED Specific Gravity	Analog Input
14 ⁽²⁾	ED Std Vol Flow	Analog Input
15 ⁽²⁾	ED Net Mass Flow	Analog Input
16 ⁽²⁾	ED Net Vol Flow	Analog Input
17 ⁽²⁾	ED Conc	Analog Input
18 ⁽²⁾	ED Baume	Analog Input
19 ⁽³⁾	Std Gas Volume Flow	Analog Input
20	Temperature	Analog Output
21	SNS Actual Flow Direction	Discrete Input
22	SNS ZeroInProgress	Discrete Input
23	SYS AnalogOutputFault	Discrete Input
24	SNS MVFailed	Discrete Input
25	Start Sensor Zero	Discrete Output
26	Reset Mass Total	Discrete Output
27	Reset Volume Total	Discrete Output
28	Reset API Reference (Standard) Volume Total	Discrete Output
29	Reset All Process Totals (not Inv)	Discrete Output
30	Reset ED Reference Volume Total	Discrete Output
31	Reset ED Net Mass Total	Discrete Output
32	Reset ED Net Volume Total	Discrete Output
33	Start/Stop All Totals (includes Inv)	Discrete Output
34	Increment ED Curve	Discrete Output
35	Reset Gas Standard Volume Total	Discrete Output
36	Start Meter Verification in Continuous Measurement Mode	Discrete Output

Tabelle 2-2. Verfügbare Kanäle des Transducer Blocks

(1) Kanäle 7 bis 11 können nur ausgewählt werden, wenn die Anwendung Mineralölmessung aktiviert ist.

(2) Kanäle 12 bis 18 können nur ausgewählt werden, wenn die Anwendung Konzentrationsmessung aktiviert ist.

(3) Kanal 19 ist nur wählbar wenn Gas-Standardvolumenmessung aktiviert ist (siehe Abschnitt 4.3).

2.4 Konfigurieren des Integrator Function Blocks

Das Verhalten des INT Function Blocks kann auf zwei Arten konfiguriert werden:

- *Mode* Der INT Function Block Modus kann konfiguriert werden als:
 - Standard, bietet Standard-Feldbus-Verhalten für den INT Function Block
 - Einer der Werte in Tabelle 2-3, welcher den INT Function Block veranlasst, den spezifizierten Zählerwert vom MEASUREMENT Transducer Block durchzuführen.
- *Resetting* Der INT Function Block kann auf manuelles oder automatisches Zurücksetzen konfiguriert werden, wenn ein Sollwert erreicht ist.

Der INT Function Block kann nur mit einem Feldbus-Host konfiguriert werden (Abbildung 2-2 und 2-3).

Abbildung 2-2 Konfigurieren des INT Function Block Modus – Feldbus-Host

Tabelle 2-3. INT Function Block Modi

Gibt diesen Parameterwert aus:

Modus:	Transducer Block	Parameter
Standard	Kein Block	Keiner – Standardardmäßiges Verhalten des FOUNDATION Feldbus INT Blocks
Interner Massenzähler	MEASUREMENT	Mass Total: Value
Interner Volumenzähler	MEASUREMENT	Volume Total: Value
Interner Massen-Gesamtzähler	MEASUREMENT	Mass Inventory: Value
Interner Volumen-Gesamtzähler	MEASUREMENT	Volume Inventory: Value
Interner Gas-Volumenzähler	MEASUREMENT	Gas Volume Total: Value
Interner Gasvolumen-Gesamtzähler	MEASUREMENT	Gas Vol Inventory: Value
Interner API-Volumenzähler	PETROLEUM MEASUREMENT	API Corr Volume Total: Value
Interner API-Volumen-Gesamtzähler	PETROLEUM MEASUREMENT	API Corr Vol Inventory: Value
Interner KM-Standardvolumenzähler	CONCENTRATION MEASUREMENT	CM Std Volume Total: Value
Interner KM-Standardvolumen-Gesamtzähler	CONCENTRATION MEASUREMENT	CM Std Vol Inventory: Value
Interner KM-Netto-Massenzähler	CONCENTRATION MEASUREMENT	CM Net Mass Total: Value

Abbildung 2-3

	Gibt diesen Parameterwert aus:		
Modus:	Transducer Block	Parameter	
Interner KM-Nettomasse-Gesamtzähler	CONCENTRATION MEASUREMENT	CM Net Mass Inventory: Value	
Interner KM-Netto-Volumenzähler	CONCENTRATION MEASUREMENT	CM Net Volume Total: Value	
Interner KM-Nettovolumen-Gesamtzähler	CONCENTRATION MEASUREMENT	CM Net Vol Inventory: Value	

Tabelle 2-3. INT Function Block Modi (Fortsetzung)

Konfigurieren des manuellen oder automatischen Zurücksetzens – Feldbus-Host

INT Integration Type Total Setpoint Integration Type – Auf manuelles oder automatisches Zurücksetzen einstellen.

Total Setpoint – Zum automatischen Zurücksetzen; der Wert, bei dem der Zähler automatisch zurückgesetzt werden soll.

2.5 Konfigurieren der Druckkompensation

Auf Grund der Abweichung des Betriebsdrucks vom Kalibrierdruck kann sich die Sensorempfindlichkeit in Bezug auf Durchfluss und Dichte ändern. Diese Änderung bezeichnet man als *Druckeffekt*. Die Druckkompensation korrigiert diese Änderungen.

Nicht alle Sensoren und Anwendungen erfordern eine Druckkompensation. Bevor Sie eine Druckkompensation konfigurieren, setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.

Die Konfiguration der Druckkompensation erfordert drei Schritte:

- 1. Festlegen der Werte für die Druckkompensation (Abschnitt 2.5.1)
- 2. Aktivieren der Druckkompensation (Abschnitt 2.5.2)
- 3. Auswählen der Druckquelle (Abschnitt 2.5.3)

Configuration

2.5.1 Druckkompensationswerte

Bei der Druckkompensation spielen drei Werte eine Rolle:

- Flow Factor der Durchflussfaktor (Flow Factor) ist die prozentuale Änderung des Durchflusses pro psi. Diesen Wert finden Sie im Produktdatenblatt Ihres Sensors. Hierbei müssen Sie das Vorzeichen des Durchflussfaktors umkehren. Wenn z. B. der Durchflussfaktor im Produktdatenblatt mit –0,001 % pro psi angegeben ist, so ist der Druckkompensationsfaktor für den Durchfluss +0,001 % pro psi.
- Density Factor der Dichtefaktor (Density Factor) ist die Änderung der Dichte des Prozessmediums in g/cm³ pro psi. Diesen Wert finden Sie im Produktdatenblatt Ihres Sensors. Hierbei müssen Sie das Vorzeichen des Dichtefaktors umkehren. Wenn z. B. der Dichtefaktor im Produktdatenblatt mit –0,00004 g/cm³ pro psi angegeben ist, so ist der Druckkompensationsfaktor für die Dichte +0,00004 g/cm³ pro psi.
- *Flow Calibration Pressure* der Durchfluss-Kalibrierdruck (Flow Calibration Pressure) ist der Druck, bei dem der Sensor kalibriert wurde. Siehe Dokumentation der Kalibrierung, die im Lieferumfang Ihres Sensors enthalten ist. Sind die Daten nicht verfügbar, verwenden Sie 1,4 bar (20 psi).

2.5.2 Aktivieren der Druckkompensation

Sie können die Druckkompensation mittels Feldbus-Host (Abbildung 2-4) oder ProLink II (Abbildung 2-5) aktivieren. Sie benötigen die drei Druckkompensationswerte von Abschnitt 2.5.1.

Abbildung 2-4 Druckkompensation – Feldbus-Host

Pressure Comp	 Auf Enable setzen.
Flow Factor	 Stellen Sie diesen Wert auf den im Sensor-Produktdatenblatt spezifizierten Wert (in % pro psi) ein (Vorzeichen umkehren).
Density Factor	 Stellen Sie diesen Wert auf den im Sensor-Produktdatenblatt spezifizierten Wert (in g/cm³ pro psi) ein (Vorzeichen umkehren).
Flowcal Pressure	 Stellen Sie den Druck auf den Wert ein, mit dem der Sensor kalibriert wurde.

Abbildung 2-5 Druckkompensation – ProLink II

2.5.3 Konfigurieren einer Druckquelle

Sie können eine oder zwei Quellen für die Druckdaten wählen:

- *Analog Output Function Block* Mit dieser Option können Sie die Druckdaten von einer externen Druckquelle abfragen.
- Fixed pressure data Diese Option verwendet einen bekannten, konstanten Druckwert.

Anmerkung: Wenn Sie einen festen Druckwert konfigurieren, stellen Sie sicher, dass der Wert richtig ist. Wenn Sie die Druckabfrage konfigurieren, stellen Sie sicher, dass das externe Druckmessgerät genau und zuverlässig ist.

Verwenden des Analog Output Function Blocks

Den AO Function Block müssen Sie mit einem Feldbus-Host konfigurieren. Um den AO Function Block als Druckquelle zu setzen, verbinden Sie den AI Block des Druckmessers mit dem AO Block der Auswerteelektronik (Abbildung 2-6).

Einführung

Inbetriebnahme

Abbildung 2-6 Externe Druckquelle – Feldbus-Host

Verwenden fester Druckdaten

Sie können die festen Druckdaten mittels Feldbus-Host (Abbildung 2-7) oder ProLink II (Abbildung 2-8) einrichten. Sie müssen zuerst die externe Druckkompensation aktivieren, bevor Sie den festen Druckwert setzen können (siehe Abschnitt 2.5.2).

Abbildung 2-7 Feste Druckdaten – Feldbus-Host

Pressure: Value – Stellen Sie diesen Wert auf den entsprechenden festen Druckwert ein.

Abbildung 2-8 Feste Druckdaten – ProLink II

2.6 Konfigurieren der Temperaturkompensation

Die externe Temperaturkompensation kann für die Anwendungen Mineralölmessung und Konzentrationsmessung verwendet werden:

- Wenn die externe Temperaturkompensation aktiviert ist, wird bei der Mineralöl- oder Konzentrationsmessung ein externer Temperaturwert (oder ein fester Temperaturwert) anstelle des Temperaturwerts vom Sensor verwendet. Der Temperaturwert vom Coriolis-Sensor wird für alle anderen Berechnungen verwendet.
- Wenn die externe Temperaturkompensation deaktiviert ist, wird der Temperaturwert vom Coriolis-Sensor für alle Berechnungen verwendet.

Die Konfiguration der Temperaturkompensation erfordert zwei Schritte:

- 1. Aktivieren der externen Temperaturkompensation (Abschnitt 2.6.1)
- 2. Auswählen einer Temperaturquelle (Abschnitt 2.6.2)

2.6.1 Aktivieren der externen Temperaturkompensation

Sie können die Temperaturkompensation mittels Feldbus-Host (Abbildung 2-9) oder ProLink II (Abbildung 2-10) aktivieren.

Abbildung 2-9 Temperaturkompensation – Feldbus-Host

Enable Temperature Compensation – Auf *Enable* setzen.

Abbildung 2-10 Temperaturkompensation – ProLink II

2.6.2 Konfigurieren einer Temperaturquelle

Sie können eine oder zwei Quellen für die Temperaturdaten wählen:

- *Analog Output Function Block* Mit dieser Option können Sie die Temperaturdaten von einer externen Temperaturquelle abfragen.
- *Fixed temperature value* Diese Option verwendet einen bekannten, konstanten Temperaturwert.

Anmerkung: Wenn Sie einen festen Temperaturwert konfigurieren, stellen Sie sicher, dass der Wert richtig ist. Wenn Sie die Temperaturabfrage konfigurieren, stellen Sie sicher, dass das Temperaturmessgerät genau und zuverlässig ist.

Verwenden des Analog Output Function Blocks

Den AO Function Block müssen Sie mit einem Feldbus-Host konfigurieren. Um den AO Function Block als Temperaturquelle zu setzen, verbinden Sie den AI-Block des Temperaturmessgeräts mit dem AO-Block der Auswerteelektronik (Abbildung 2-11).

Verwenden fester Temperaturdaten

Sie können die festen Temperaturdaten mittels Feldbus-Host (Abbildung 2-12) oder ProLink II (Abbildung 2-13) einrichten. Sie müssen zuerst die externe Temperaturkompensation aktivieren, bevor Sie den festen Temperaturwert einstellen (siehe Abschnitt 2.6.1).

Abbildung 2-12 Feste Temperaturdaten – Feldbus-Host

External Temperature: Value – Stellen Sie diesen Wert auf den entsprechenden festen Temperaturwert ein.

Abbildung 2-13 Feste Temperaturdaten – ProLink II

2.7 Nullpunktkalibrierung des Durchflussmessers

Die Nullpunktkalibrierung des Durchflussmessers setzt den Referenzpunkt bei Nulldurchfluss. Die Nullpunktkalibrierung wurde werksseitig durchgeführt, es ist keine Nullpunktkalibrierung vor Ort erforderlich. Sie können jedoch eine Nullpunktkalibrierung vor Ort durchführen, um beispielsweise lokale Vorschriften einzuhalten oder die werksseitige Nullpunktkalibrierung zu bestätigen.

Wenn Sie eine Nullpunktkalibrierung des Durchflussmessers durchführen, müssen Sie ggf. auch die Dauer der Nullpunktkalibrierung einstellen. Unter *Dauer der Nullpunktkalibrierung* versteht man die Zeit, die der Auswerteelektronik vorgegeben wird, um den Referenzpunkt bei Nulldurchfluss zu bestimmen. Die voreingestellte Zeit liegt bei 20 Sekunden.

- Eine *längere* Dauer der Nullpunktkalibrierung kann zu einem genaueren Nullpunkt führen, aber die Wahrscheinlichkeit einer fehlerhaften Nullpunktkalibrierung ist größer. Der Grund für eine inkorrekte Kalibrierung ist die zunehmende Wahrscheinlichkeit von Signalrauschen.
- Eine *kürzere* Dauer der Nullpunktkalibrierung führt dagegen zu einem weniger genauen Nullpunkt, aber die Wahrscheinlichkeit einer inkorrekten Nullpunktkalibrierung ist geringer.

Für die meisten Anwendungen ist die voreingestellte Dauer der Nullpunktkalibrierung geeignet.

Anmerkung: Bei einem anstehenden Alarm mit hoher Priorität sollte keine Nullpunktkalibrierung des Durchflussmessers vorgenommen werden. Beheben Sie das Problem, bevor Sie eine Nullpunktkalibrierung des Durchflussmessers durchführen. Bei einem anstehenden Alarm mit niedriger Priorität kann eine Nullpunktkalibrierung vorgenommen werden. Informationen darüber, wie Sie auf Alarme reagieren, finden Sie in Abschnitt 5.4.

2.7.1 Vorbereitung auf die Nullpunktkalibrierung

Vorbereitung auf die Nullpunktkalibrierung:

- 1. Schalten Sie die Spannungsversorgung des Durchflussmessers ein. Geben Sie dem Gerät ca. 20 Minuten Zeit, um seine Betriebstemperatur zu erreichen.
- 2. Lassen Sie das Prozessmedium durch den Sensor strömen, bis die Sensortemperatur ungefähr die normale Betriebstemperatur erreicht hat.
- 3. Schließen Sie das Absperrventil, welches sich auslaufseitig vom Sensor befindet.
- 4. Stellen Sie sicher, dass der Sensor vollständig mit Prozessmedium gefüllt ist und der Durchfluss durch den Sensor absolut gestoppt ist.

VORSICHT

Wenn noch Prozessmedium durch den Sensor fließt, ist die Nullpunktkalibrierung ungenau, was auch zu einer ungenauen Prozessmessung führt.

Um die Nullpunktkalibrierung und die Messgenauigkeit zu verbessern, stellen Sie sicher, dass der Durchfluss durch den Sensor absolut gestoppt ist.

2.7.2 Nullpunktkalibrierung

Sie können die Nullpunktkalibrierung mittels Feldbus-Host (Abbildung 2-14), dem Bedieninterface (Abbildung 2-15) oder ProLink II (Abbildung 2-16) durchführen. Schlägt die Nullpunktkalibrierung fehl, schlagen Sie unter Abschnitt 6.5 nach bezüglich Informationen zur Fehlersuche.

Abbildung 2-14 Nullpunktkalibrierung – Feldbus-Host

Zero Calibration - Parameter der Methode, die die nachfolgende Vorgehensweise initiiert.

Abbildung 2-15 Nullpunktkalibrierung – Display

Abbildung 2-16 Nullpunktkalibrierung – ProLink II

- Siehe Abschnitt 6.5 bezüglich einer Fehlersuche.
- So lange Sie die Verbindung von ProLink II zur Auswerteelektronik nicht trennen, können Sie den vorherigen Nullpunktwert wieder abrufen.

2.7.3 Wiederherstellen der Nullpunkte

ProLink II kann den vorherigen Nullpunkt wiederherstellen, solange Sie den Bildschirm der Nullpunktkalibrierung nicht geschlossen haben.

Außerdem können Sie den werksseitigen Nullpunkt wieder herstellen, wenn die Auswerteelektronik an einem Core-Prozessor mit erweiterter Funktionalität angeschlossen ist. Das vollständige Wiederherstellen des werksseitigen Nullpunkts kann mittels Feldbus-Host (Abbildung 2-17), ProLink II (Abbildung 2-18) oder dem Bedieninterface (Abbildung 2-19) erfolgen.

Abbildung 2-17 Wiederherstellen des werksseitigen Nullpunkts – Feldbus-Host

Nullpunkts

Abbildung 2-18 Wiederherstellen des werksseitigen Nullpunkts – ProLink II

Abbildung 2-19 Wiederherstellen des werksseitigen Nullpunkts – Bedieninterface

Kapitel 3 Kalibrierung

3.1 Übersicht

Dieses Kapitel beschreibt folgende Vorgehensweisen:

- Charakterisierung (Abschnitt 3.3)
- Intelligente Systemverifizierung (Abschnitt 3.4)
- Systemvalidierung und Einstellen der Gerätefaktoren (Abschnitt 3.5)
- Dichtekalibrierung (Abschnitt 3.6)
- Temperaturkalibrierung (Abschnitt 3.7)

Anmerkung: Alle Vorgehensweisen in diesem Kapitel gehen davon aus, dass Sie eine Kommunikation mit der Auswerteelektronik hergestellt haben und dass Sie alle Sicherheitsanforderungen einhalten. Siehe Anhang E und F.

3.2 Charakterisierung, intelligente Systemverifizierung, Systemvalidierung und Kalibrierung

Es gibt vier Vorgehensweisen:

- *Charakterisierung* stellt die Auswerteelektronik so ein, dass sie die spezifischen Merkmale des angeschlossenen Sensors kompensiert
- *Intelligente Systemverifizierung* Baut das Vertrauen in die Systemleistung auf, indem Sekundärvariablen analysiert werden, die in engem Zusammenhang mit Durchfluss- und Dichtekalibrierfaktoren stehen
- *Systemvalidierung* Bestätigt die Leistung durch einen Vergleich der Systemmessung mit einem Messnormal
- *Kalibrierung* Aufstellen der Beziehung zwischen einer Prozessvariablen (Durchfluss, Dichte oder Temperatur) und dem Sensorsignal

Systemvalidierung, Charakterisierung und Kalibrierung sind für alle Auswerteelektronikmodelle 2700 verfügbar. Die intelligente Systemverifizierung ist nur verfügbar, wenn die Option der intelligenten Systemverifizierung mit der Auswerteelektronik bestellt wurde.

Diese vier Vorgehensweisen werden in den Abschnitten 3.2.1 bis 3.2.5 behandelt und verglichen. Bevor Sie eine dieser Vorgehensweisen ausführen, lesen Sie diese Abschnitte, um sicherzustellen, dass Sie die für Ihren Zweck zutreffende Vorgehensweise ausführen.

3.2.1 Charakterisierung

Die Charakterisierung stellt die Auswerteelektronik so ein, dass sie die spezifischen Merkmale des angeschlossenen Sensors kompensiert. Die Charakterisierungsparameter (auch "Kalibrierfaktoren" genannt) beschreiben die Sensorempfindlichkeit hinsichtlich Durchfluss, Dichte und Temperatur.

Wenn Auswerteelektronik und Sensor zusammen als Coriolis-Durchflussmesser bestellt wurden, ist der Durchflussmesser bereits charakterisiert. Unter bestimmten Umständen (normalerweise bei der ersten Verbindung von Sensor und Auswerteelektronik), kann es sein, dass die Charakterisierungsdaten neu eingegeben werden müssen. Wenn Sie unsicher sind, ob Sie Ihren Durchflussmesser charakterisieren sollten, setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.

3.2.2 Intelligente Systemverifizierung

Die intelligente Systemverifizierung bewertet die strukturelle Integrität der Sensor-Messrohre durch Vergleich der aktuellen Steifigkeit der Messrohre mit der Steifigkeit, die im Werk gemessen wurde. Steifigkeit ist definiert als Belastung pro Auslenkungseinheit oder Kraft dividiert durch die Auslenkung. Durch die Änderung der strukturellen Integrität ändert sich die Reaktion des Sensors in Bezug auf Masse und Dichte; dieser Wert kann als Indikator der Messleistung herangezogen werden. Änderungen der Steifigkeit des Messrohres sind normalerweise bedingt durch Erosion, Korrosion oder Beschädigung des Rohres.

Die intelligente Systemverifizierung beeinflusst die Messung in keiner Weise. Micro Motion empfiehlt, die intelligente Systemverifizierung in regelmäßigen Abständen durchzuführen.

3.2.3 Systemvalidierung und Gerätefaktoren

Die Systemvalidierung vergleicht den Messwert der Auswerteelektronik mit einem externen Messnormal. Systemvalidierung erfordert einen Datenpunkt.

Anmerkung: Für eine brauchbare Systemvalidierung muss das externe Messnormal genauer sein als der Sensor. Im Produktdatenblatt des Sensors finden Sie die Spezifikation der Genauigkeit.

Weicht die Massendurchfluss-, Volumendurchfluss- oder Dichtemessung der Auswerteelektronik signifikant vom externen Messnormal ab, sollte der entsprechende Gerätefaktor eingestellt werden. Der Gerätefaktor ist ein Wert, mit dem die Auswerteelektronik den Wert der Prozessvariablen multipliziert. Die voreingestellten Gerätefaktoren sind **1.0**, das bedeutet, dass kein Unterschied zwischen den Daten vom Sensor und den ausgegebenen Daten besteht.

Gerätefaktoren werden normalerweise dazu verwendet, um den Durchflussmesser auf ein geeichtes Messnormal abzugleichen. Ggf. müssen die Gerätefaktoren regelmäßig ermittelt und konfiguriert werden, um die Vorschriften zu erfüllen.

3.2.4 Kalibrierung

Der Durchflussmesser misst Prozessvariablen basierend auf festen Referenzpunkten. Die Kalibrierung gleicht diese Referenzpunkte ab. Drei Arten der Kalibrierung können durchgeführt werden:

- Nullpunktkalibrierung (siehe Abschnitt 2.7)
- Dichtekalibrierung
- Temperaturkalibrierung

Dichte- und Temperaturkalibrierung erfordern zwei Datenpunkte (niedrig und hoch) und eine externe Messung für jeden. Die Kalibrierung ändert den Versatz und/oder die Steigung der Linie, die das Verhältnis von Prozessdichte und ausgegebenem Dichtewert repräsentiert oder die das Verhältnis von Prozesstemperatur und ausgegebenem Temperaturwert repräsentiert.

Anmerkung: Für eine brauchbare Dichte- oder Temperaturkalibrierung müssen die externen Messungen genau sein.

Durchflussmesser wurden werkseitig kalibriert und müssen normalerweise nicht vor Ort kalibriert werden. Führen Sie eine Kalibrierung des Durchflussmessers nur dann durch, wenn dies durch gesetzliche Bestimmungen gefordert wird. Bevor Sie Ihren Durchflussmesser kalibrieren, setzen Sie sich mit Micro Motion in Verbindung.

Anmerkung: Micro Motion empfiehlt eine Systemvalidierung und die Verwendung von Gerätefaktoren anstatt einer Kalibrierung, um den Durchflussmesser auf ein geeichtes Messnormal abzugleichen oder einen Messfehler zu korrigieren.

3.2.5 Vergleich und Empfehlungen

Wenn Sie zwischen der intelligenten Systemverifizierung, der Systemvalidierung und der Kalibrierung wählen, berücksichtigen Sie die folgenden Faktoren:

- Prozess- und Messunterbrechung
 - Die intelligente Systemverifizierung bietet die Möglichkeit, die Prozessmessung während des Tests fortzusetzen.
 - Die Systemvalidierung für Dichte erfordert keine Unterbrechung des Prozesses. Aber die Systemvalidierung für Massen- oder Volumendurchfluss erfordern einen Stillstand des Prozesses während der Testdauer.
 - Die Kalibrierung erfordert einen Stillstand des Prozesses. Zusätzlich erfordert die Dichteund Temperaturkalibrierung den Austausch des Prozessmediums gegen ein Medium niedriger und hoher Dichte oder niedriger und hoher Temperatur. Nullpunktkalibrierung erfordert das Stoppen des Durchflusses durch den Sensor.
- Anforderungen an die externe Messung
 - Die intelligente Systemverifizierung erfordert keine externen Messungen.
 - Die Nullpunktkalibrierung erfordert keine externen Messungen.
 - Dichtekalibrierung, Temperaturkalibrierung und Systemvalidierung erfordern externe Messungen. Für gute Ergebnisse muss die externe Messung hochgenau sein.

- Justierung der Messung
 - Die intelligente Systemverifizierung ist ein Indikator des Sensorzustandes, ändert aber die interne Messung des Durchflussmessers auf keinste Weise.
 - Die Systemvalidierung ändert die interne Messung des Durchflussmessers auf keine Weise. Wenn Sie einen Gerätefaktor als Ergebnis einer Systemvalidierung einstellen, so wird nur die ausgegebene Messung geändert – die Basismessung bleibt unverändert. Sie können die Änderung jederzeit rückgängig machen, indem Sie den Gerätefaktor auf den vorherigen Wert zurücksetzen.
 - Die Kalibrierung ändert die Interpretation der Prozessdaten der Auswerteelektronik und nimmt entsprechende Änderungen der Basismessung vor. Wenn Sie eine Nullpunktkalibrierung durchführen, können Sie den werksseitigen Nullpunktwert (oder bei Verwendung von ProLink II den vorherigen Nullpunktwert) wieder aufrufen. Wenn Sie aber eine Dichte- oder Temperaturkalibrierung durchführen, können Sie nicht die vorherigen Kalibrierfaktoren nur dann wieder herstellen, wenn Sie diese notiert haben.

Micro Motion empfiehlt den Erwerb der Option Smart Meter Verification für die Auswerteelektronik sowie die Durchführung dieser Option in regelmäßigen Abständen.

3.3 Durchführen der Charakterisierung

Die Charakterisierung eines Durchflussmessers beinhaltet die Eingabe der Parameter, die sich auf dem Typenschild des Sensors befinden.

3.3.1 Parameter der Charakterisierung

Die einzugebenden Charakterisierungsparameter hängen vom Sensortyp ab: "T-Serie" oder "Andere", wie aufgeführt in Tabelle 3-1. Die Kategorie "Andere" beinhaltet alle Micro Motion Sensoren außer der T-Serie.

Die Charakterisierungsparameter stehen auf dem Typenschild des Sensors. Das Format des Typenschilds variiert je nach Kaufdatum Ihres Sensors. In Abbildung 3-1 und 3-2 ist ein neueres und ein älteres Typenschild eines Sensors abgebildet.

		Sensortyp	
Charakterisierungsdaten	Feldbus-Parameter	T-Serie	Andere
K1	K1	✓	✓ ⁽¹⁾
K2	K2	✓	✓ ⁽¹⁾
FD	FD	1	√ ⁽¹⁾
D1	D1	1	✓ ⁽¹⁾
D2	D2	1	✓ ⁽¹⁾
Temp coeff (DT) ⁽²⁾	Temperature Coefficient	1	✓ ⁽¹⁾
Flow cal	Flow Calibration Factor		✓ ⁽³⁾
FCF	Flow Calibration Factor	1	
FT	Temperature Coefficient for Flow	1	
FTG	T-Series Flow TG Coeff	1	
FFQ	T-Series Flow FQ Coeff	1	
DTG	T-Series Density TG Coeff	1	
DFQ1	T-Series Density FQ Coeff 1	1	
DFQ2	T-Series Density FQ Coeff 2	1	

Tabelle	3-1	Sensor-Kalibrierparameter
IUNCIIC		

(1) Siehe Abschnitt "Dichtekalibrierfaktoren".

(2) Auf einigen Sensor Typenschildern als TC bezeichnet.
(3) Siehe Abschnitt "Durchflusskalibrierwerte".

Abbildung 3-1 Beispiel-Typenschilder – Alle Sensoren außer T-Serie

Neueres Typenschild

MODEL
S/N
FLOW CAL* 19.0005.13
DENS CAL * 12502142824.44
D1 0.0010 K1 12502.000
D2 0.9980 K2 14282.000
TC 4.44000 FD 310
TEMP RANGE TO C
TUBE** CONN*** CASE**
 CALIBRATION FACTORS REFERENCE TO 0. C⁴ MAXIMUM PRESSURE RATING AT 25 C, ACCORDING TO ASME B31,3 MAXIMUM PRESSURE RATING AT 25C, ACCORDING TO ANSI/ASME B16.5 OR MER*S RATING

Älteres Typenschild

Sensor	S/N
Meter lype	
Meter Factor	10 0005 12
Flow Cal Factor	19.0005.13
Dens Cal Factor	12500142864.44
Cal Factor Ref	to O°C
TEMP	°C
TUBE*	CONN * *
• MAX. PRESSURE RATING AT 25°C, ACCORDING T • MAX. PRESSURE RATING AT 25°C, ACCORDING T	O ANME B31.3. O ANSI/ASME B16.5 OR MER'S RATING.

Abbildung 3-2 Beispiel-Typenschilder – Sensoren der T-Serie

Neueres Typenschild

```
MODEL T100T628SCAZEZZZZ S/N 1234567890
FLOW FCF XXXX.XX.XX
FTG X.XX FFQ
DENS D1 X.XXXXX K1
                                         X.XX
                                         XXXXX.XXX
        D2
              X.XXXXX K2
                                         XXXXX.XXX
               X.XX
                             FD
        DT
                                         XX.XX
DTG X.XX
TEMP RANGE -X
                                         XX.XX DFQ2 X.XX
                            DFQ1
                  -XXX TO XXX C
TUBE*
            CONN * *
                         CASE*
           XXXXX
                         XXXX XXXXXX
XXXX
     • MAXIMUM PRESSURE RATING AT 25°C, ACCORDING TO ASME B31.3
•• MAXIMUM PRESSURE RATING AT 25°C, ACCORDING TO ANSI/ASME B16.5, OR MFR'S RATING
```

1	MODEL T100T628SCAZEZZZZ S/N 1234567890
	FLOW FCF X.XXXX FT X.XX FTG X.XX FFQ X.XX
	DENS D1 X XXXXX K1 XXXXX XXX D2 X XXXXX K2 XXXXX XXX
	DT X.XX FD XX.XX DTG X XX DE01 XX XX DE02 X XX
	TEMP RANGE -XXX TO XXX C
	XXXX XXXXX XXXX XXXXX
	 MAXIMUM PRESSURE RATING AT 25°C, ACCORDING TO ASME B31.3 MAXIMUM PRESSURE RATING AT 25°C, ACCORDING TO AMSI/ASME B16.5, OR MFR*S RATING

Dichtekalibrierfaktoren

Wenn das Typenschild Ihres Sensors keinen D1 oder D2 Wert aufweist:

• Für D1 geben Sie den Wert unter Dens A oder den D1-Wert vom Kalibrierzertifikat ein. Dieser Wert ist die Betriebsdichte des Kalibriermediums mit der niedrigen Dichte. Micro Motion verwendet hierfür Luft.

Älteres Typenschild

• Für D2 geben Sie den Wert unter Dens B oder den D2-Wert vom Kalibrierzertifikat ein. Dieser Wert ist die Betriebsdichte des Kalibriermediums mit der höheren Dichte. Micro Motion verwendet hierfür Wasser.

Wenn das Typenschild Ihres Sensors keinen K1- oder K2-Wert aufweist:

- Für K1 geben Sie die ersten 5 Ziffern des Dichtekalibrierfaktors ein. Im Beispiel-Typenschild Abbildung 3-1 ist dieser Wert 12500.
- Für K2 geben Sie die zweiten 5 Ziffern des Dichtekalibrierfaktors ein. Im Beispiel-Typenschild Abbildung 3-1 ist dieser Wert 14286.

Wenn das Typenschild Ihres Sensors keinen FD-Wert aufweist, nehmen Sie mit dem Micro Motion Kundenservice Kontakt auf.

Wenn das Typenschild Ihres Sensors keinen DT- oder TC-Wert aufweist, geben Sie die letzten 3 Ziffern des Dichtekalibrierfaktors ein. Im Beispiel-Typenschild Abbildung 3-1 ist dieser Wert 4,44.

Durchflusskalibrierwerte

Zwei separate Werte werden verwendet, um die Durchflusskalibrierung darzustellen: Ein 6-stelliger FCF-Wert und ein 4-stelliger FT-Wert. Beide Werte beinhalten Dezimalpunkte. Bei der Charakterisierung wurde dies als eine Zeichenkette, bestehend aus 10 Zeichen inklusive zweier Dezimalpunkte, eingegeben. Im ProLink II wird dieser Faktor als Flowcal Parameter, beim Handterminal für Sensoren der T-Serie Sensoren FCF und für alle anderen Sensoren als Flowcal bezeichnet.
Um den erforderlichen Wert zu erhalten:

• Bei älteren Sensoren der T-Serie verknüpfen Sie den FCF-Wert und den FT-Wert vom Typenschild des Sensors, wie nachstehend gezeigt.

- Bei neueren Sensoren der T-Serie ist der FCF-Faktor, bestehend aus 10-Zeichen, direkt auf dem Typenschild des Sensors zu erkennen. Der Wert sollte, wie dargestellt, mit den beiden Dezimalpunkten eingegeben werden. Es ist keine Verknüpfung erforderlich.
- Bei allen anderen Sensoren ist der Flow Cal Faktor, bestehend aus 10-Zeichen, direkt auf dem Typenschild des Sensors zu erkennen. Der Wert sollte, wie dargestellt, mit den beiden Dezimalpunkten eingegeben werden. Es ist keine Verknüpfung erforderlich.

3.3.2 Charakterisierung

Zur Charakterisierung des Durchflussmessers geben Sie die Daten des Sensor-Typenschilds in die Auswerteelektronik ein. Sie können die Auswerteelektronik mittels Feldbus-Host (Abbildung 3-3) oder ProLink II (Abbildung 3-4) charakterisieren.

Anmerkung: Bevor Sie die Charakterisierungsparameter eingeben, müssen Sie den Sensortyp konfigurieren.

Abbildung 3-3 Charakterisierung – Feldbus Host

Sensor Type Code – Stellen Sie diesen Parameter auf entsprechend dem Sensortyp auf Curved Tube oder Straight Tube ein.

* - Setzen Sie jeden der Feldbusparameter, dargestellt in Tabelle 3-1, auf den Wert der zugehörigen Sensordaten, die sich auf dem Sensor-Typenschild befinden.

Abbildung 3-4 Charakterisierung – ProLink II

3.4 Durchführen der intelligenten Systemverifizierung

Anmerkung: Um die intelligente Systemverifizierung verwenden zu können, muss die Auswerteelektronik zusammen mit einem Core-Prozessor erweiterter Funktionalität eingesetzt werden, und die Smart Meter Verification Option muss für die Auswerteelektronik erworben worden sein.

3.4.1 Vorbereiten auf die intelligente Systemverifizierung

Die intelligente Systemverifizierung kann mit einem beliebigen Prozessmedium durchgeführt werden. Es ist nicht erforderlich, die werksseitigen Bedingungen einzuhalten.

Während des Tests müssen die Prozessbedingungen stabil sein. Um die Stabilität zu maximieren:

- Halten Sie Temperatur und Druck konstant.
- Vermeiden Sie Schwankungen in der Zusammensetzung des Mediums (z. B. Zweiphasenströmung, Abscheidungen, usw.).
- Halten Sie den Durchfluss konstant. Für eine höhere Testsicherheit, stoppen Sie den Durchfluss.

Variiert die Stabilität außerhalb der Testgrenzen, wird die intelligente Systemverifizierung abgebrochen. Prüfen Sie die Stabilität des Prozesses und führen den Test erneut durch.

Konfiguration der Auswerteelektronik

Die intelligente Systemverifizierung wird durch keine Parameter, die für Durchfluss, Dichte oder Temperatur konfiguriert wurden, beeinflusst. Die Konfiguration der Auswerteelektronik muss nicht geändert werden.

Regelkreise und Prozessmessung

Wenn die Ausgänge der Auswerteelektronik während des Tests auf Last Measured Value oder Fault gesetzt werden, bleiben die Ausgänge für zwei Minuten auf einem fest eingestellten Wert. Deaktivieren Sie alle Regelkreise während der Dauer des Tests und stellen Sie sicher, dass alle während dieser Periode ausgegebenen Daten entsprechend gehandhabt werden.

3.4.2 Durchführen des intelligenten Systemverifizierungstests

Die Vorgehensweisen für einen Test der intelligenten Systemverifizierung durchzuführen finden Sie in Abbildungen 3-5, 3-6, 3-7 und 3-8.

Schritt- Nummer	Schritt-Beschreibung	Parameter
1	Ausgangsstatus setzen	Block: Diagnostic Index: 55 Value: • 0: Last measured value (default) • 1: Fault
2	Vorgehensweise starten/abbrechen	Block: Diagnostic Index: 54 (Start/Stop Meter Verification) • 0: Abort • 1: Start • 6: Start in Continue Measurement mode ⁽¹⁾
3	Aktuellen Algorithmusstatus prüfen	Block: Diagnostic Index: 57
4	Read percent complete	Block: Diagnostic Index: 60 (Progress)
5	Algorithmus-Abbruchstatus prüfen	Block: Diagnostic Index: 59
6	Einlass-Steifigkeit prüfen	Block: Diagnostic Index: 61 • 0: Within uncertainty limit • 1: Outside uncertainty limit
7	Auslass-Steifigkeit prüfen	Block: Diagnostic Index: 62 • 0: Within uncertainty limit • 1: Outside uncertainty limit
8	Abbruchcode lesen	Block: Diagnostic Index: 58 Codes: Siehe Tabelle 3-3

Tabelle 3-2 Feldbus-Host-Interface für intelligente Systemverifizierung

(1) Setzen von Index 85 (Start On Line Smart Systemverifizierung) auf 1 entspricht Setzen von Index 54 auf 6.

Abbildung 3-6 Intelligente Systemverifizierung – ProLink II

Abbildung 3-7 Intelligente Systemverifizierung– Bedieninterface

Abbildung 3-8 Intelligente Systemverifizierung– Bedieninterface

3.4.3 Lesen und Interpretieren der Ergebnisse der intelligenten Systemverifizierung

Bestanden/Fehlgeschlagen/Abbruch

Wenn die intelligente Systemverifizierung beendet ist, wird das Ergebnis als Pass, Fail/Caution (je nach eingesetztem Tool) oder Abort angezeigt:

- Pass Das Testergebnis liegt innerhalb der Spezifikations-Unsicherheitsgrenze. Mit anderen Worten, die Steifigkeit der linken und rechten Aufnehmerspule entspricht den Werksdaten plus oder minus der spezifizierten Unsicherheitsgrenze. Wenn Nullpunktwert und Konfiguration der Auswerteelektronik den Werksdaten entsprechen, entspricht der Sensor den Werksspezifikationen für die Durchfluss- und Dichtemessung. Es kann erwartet werden, dass der Sensor die intelligente Systemverifizierung bei jedem Test besteht.
- Fail/Caution Das Testergebnis liegt nicht innerhalb der Spezifikations-Unsicherheitsgrenze. Micro Motion empfiehlt, dass Sie die intelligente Systemverifizierung direkt wiederholen. Wenn Sie die Ausgänge auf Continue Measurement eingestellt hatten, ändern Sie die Einstellung auf Last Measured Value oder Fault.
 - Besteht der Sensor den zweiten Test, kann das erste Fail/Caution Ergebnis ignoriert werden.
 - Wenn der Sensor den zweiten Test nicht besteht, sind möglicherweise die Messrohre beschädigt. Ziehen Sie Ihre Prozesskenntnisse zu Rate, um mögliche Schäden zu bestimmen und die entsprechenden Korrekturmaßnahmen einzuleiten. Diese Aktion kann auch bedeuten, dass der Sensor ausgebaut und die Messrohre untersucht werden müssen. Mindestens ist jedoch die Validierung des Durchflusses und die Kalibrierung der Dichte durchzuführen.
- *Abort* Während der intelligenten Systemverifizierung ist ein Problem aufgetreten (z. B. Instabilität des Prozesses). Die Abbruchcodes sind in Tabelle 3-3 aufgelistet, und für jeden Code sind empfohlene Korrekturmaßnahmen angegeben.

Abbruchcode	Beschreibung	Empfohlene Maßnahme
1	Abbruch durch Benutzer	Keine Aktion erforderlich. 15 Sekunden warten, bevor ein weiterer Test gestartet wird.
3	Frequenzdrift	Sicherstellen, dass Temperatur, Durchfluss und Dichte konstant sind, und dann den Test erneut durchführen.
5	Hohe Antriebsverstärkung	Sicherstellen, dass der Durchfluss konstant ist, das eingeschlossene Gas auf ein Minimum reduzieren und den Test erneut durchführen.
8	Instabiler Durchfluss	Die Empfehlungen für konstanten Durchfluss in Abschnitt 3.4.1 beachten und dann den Test erneut durchführen.
13	Keine werkseitigen Referenzdaten für die Durchführung der intelligenten Systemverifizierung mit Luft verfügbar	Den Micro Motion Kundenservice verständigen und den Abbruchcode angeben.

Tabelle 3-3 Abbruchcodes f ür die intelligente Systemverifizierung

Abbruchcode	Beschreibung	Empfohlene Maßnahme
14	Keine werkseitigen Referenzdaten für die Durchführung der intelligenten Systemverifizierung mit Wasser verfügbar	Den Micro Motion Kundenservice verständigen und den Abbruchcode angeben.
15	Keine Konfigurationsdaten für die intelligente Systemverifizierung verfügbar	Den Micro Motion Kundenservice verständigen und den Abbruchcode angeben.
Andere	Allgemeiner Abbruch	Den Test wiederholen. Wenn der Test erneut abgebrochen wird, den Micro Motion Kundenservice verständigen und den Abbruchcode angeben.

Tabelle 3-3 Abbruchcodes für die intelligente Systemverifizierung

Detaillierte Testdaten mit ProLink II

Für jeden Test werden die folgenden Daten in der Auswerteelektronik gespeichert:

- Einschaltdauer in Sekunden zum Zeitpunkt des Tests
- Testergebnis
- Steifigkeit der linken und rechten Aufnehmer, dargestellt als prozentuale Abweichung von den Werksdaten. Bei Abbruch des Tests wird für diese Werte 0 gespeichert.
- Abbruchcode, falls zutreffend

ProLink II speichert für jeden Test weitere beschreibende Informationen in einer Datenbank auf dem lokalen PC; dazu gehören.

- Zeitstempel basierend auf der PC-Uhr
- Aktuelle Identifikationsdaten des Durchflussmessers
- Aktuelle Durchfluss- und Dichte-Konfigurationsparameter
- Aktuelle Nullpunktwerte
- Aktuelle Prozesswerte für Massendurchfluss, Volumendurchfluss, Dichte, Temperatur und externen Druck
- (Optional) Vom Benutzer eingegebene Kunden- und Testbeschreibungen

Wenn Sie eine intelligente Systemverifizierung mittels ProLink II durchführen, prüft ProLink II die Auswerteelektronik zunächst auf neue Testergebnisse und synchronisiert, falls erforderlich, die lokale Datenbank. Bei diesem Schritt zeigt ProLink II die folgende Meldung an:

Synchronizing x out of y Carriage Return (CR) Please wait

Anmerkung: Wenn Sie eine Aktion anfordern, während die Synchronisation läuft, zeigt ProLink II eine Mitteilung an, ob die Synchronisation fertiggestellt werden soll oder nicht. Wenn Sie "No" wählen, werden die neuesten Testergebnisse von der Auswerteelektronik ggf. nicht in der ProLink II Datenbank gespeichert.

Die Testergebnisse stehen am Ende jedes Tests in der folgenden Form zur Verfügung:

- Als Testergebnis-Diagramm (siehe Abbildung 3-9).
- Als Testbericht, der die beschreibenden Informationen über den aktuellen Test, das Testergebnis-Diagramm und Hintergrundinformationen über die intelligente Systemverifizierung enthält. Sie können diesen Bericht in eine HTML-Datei exportieren oder auf dem Standarddrucker ausdrucken.

Einführung

Anmerkung: Um das Diagramm und den Bericht für vorherige Tests anzuzeigen, ohne einen Test auszuführen, klicken Sie im ersten Bildschirm Smart Meter Verification auf die Optionen View Previous Test Results und Print Report. Siehe Abbildung 3-9. Testberichte stehen nur für Tests zur Verfügung, die mit ProLink II durchgeführt wurden.

Abbildung 3-9 Testergebnis-Diagramm

Das Testergebnis-Diagramm zeigt die Ergebnisse für alle Tests in der ProLink II Datenbank an, dargestellt im Vergleich zur Spezifikations-Unsicherheitsgrenze. Die Einlass- und Auslass-Steifigkeit werden separat dargestellt. Dadurch kann zwischen lokalen und einheitlichen Änderungen an den Sensor-Messrohren unterschieden werden.

Dieses Diagramm unterstützt Trendanalysen, die bei der Erkennung von Problemen mit dem Messsystem hilfreich sein können, bevor diese zu ernsthaften Störungen führen.

Configuratior

Kalibrierung

Folgendes ist zu beachten:

- Das Testergebnis-Diagramm zeigt ggf. nicht alle Testergebnisse, und die Testzähler sind ggf. nicht fortlaufend. ProLink II speichert Informationen über alle Tests, die mit ProLink II durchgeführt wurden, sowie bei Synchronisation der Testdatenbank über alle in der Auswerteelektronik verfügbare Tests. Die Auswerteelektronik speichert jedoch nur die letzten 20 Testergebnisse. Um einen kompletten Satz an Testergebnissen zu erhalten, sollten Sie die Tests stets mit ProLink II durchführen oder die ProLink II Datenbank synchronisieren, bevor Testergebnisse überschrieben werden.
- Das Diagramm verwendet unterschiedliche Symbole, um zwischen Tests zu unterscheiden, die mit ProLink II oder einem anderen Hilfsmittel durchgeführt wurden. Ein Testbericht steht nur für Tests zur Verfügung, die mit ProLink II durchgeführt wurden.
- Sie können auf das Diagramm doppelklicken, um die Darstellung auf unterschiedliche Weise zu variieren (Ändern von Titeln, Schriftarten, Farben, Rändern und Rasterlinien usw.) und die Daten in zusätzliche Formate zu exportieren (einschließlich "zum Drucker").
- Sie können das Diagramm in eine CSV-Datei exportieren, um es in externen Anwendungen verwenden zu können.

Detaillierte Testdaten mit dem Bedieninterface

Für jede intelligente Systemverifizierung werden die folgenden Daten in der Auswerteelektronik gespeichert:

- Einschaltdauer in Sekunden zum Zeitpunkt des Tests
- Testergebnis
- Steifigkeit der linken und rechten Aufnehmer, dargestellt als prozentuale Abweichung von den Werksdaten. Bei Abbruch des Tests wird für diese Werte 0 gespeichert.
- Abbruchcode, falls zutreffend

Zum Anzeigen dieser Daten siehe Abbildung 3-6 und 3-10.

3.4.4 Einrichten der automatischen oder fernausgelösten Ausführung der intelligenten Systemverifizierung

Es gibt zwei Möglichkeiten zur automatischen Ausführung einer intelligenten Systemverifizierung:

- Einrichtung einer einmaligen automatischen Ausführung
- Einrichten einer wiederkehrenden Ausführung

Um eine einmalige automatische Ausführung einzurichten, eine wiederkehrende Ausführung einzurichten, die Anzahl der Stunden bis zum nächsten geplanten Test anzuzeigen oder einen Zeitplan zu löschen:

- Mit ProLink II wählen Sie die Optionen Tools > Meter Verification > Schedule Meter Verification.
- Mit dem Bedieninterface siehe Abbildungen 3-6 und 3-11.
- Bei Verwendung eines Feldbus-Host ist der Zeitplan f
 ür die intelligente Systemverifizierung im Diagnostic Transducer Block zu finden. Siehe Abbildung 3-12.

Folgendes ist zu beachten:

- Wenn Sie eine einmalige automatische Ausführung einrichten, geben Sie die Startzeit als Anzahl der Stunden von der aktuellen Uhrzeit an. Beispiel: Wenn die aktuelle Uhrzeit 2:00 Uhr ist und Sie 3,5 Stunden angeben, wird der Test um 5:30 Uhr durchgeführt.
- Wenn Sie eine wiederkehrende Ausführung einrichten, geben Sie die Anzahl der Stunden zwischen den Ausführungen an. Der erste Test wird durchgeführt, wenn die angegebene Anzahl der Stunden abgelaufen ist, und der Test wird im gleichen Intervall wiederholt, bis der Zeitplan gelöscht wird. Beispiel: Wenn die aktuelle Uhrzeit 2:00 Uhr ist und Sie 2 Stunden angeben, wird der erste Test um 4:00 Uhr durchgeführt, der nächste Test um 6:00 Uhr usw.
- Wenn Sie den Zeitplan löschen, werden die Einstellungen sowohl für die einmalige als auch die wiederkehrende Ausführung gelöscht.

Abbildung 3-12 Zeitplan der intelligenten Systemverifizierung – Feldbus-Host

3.5 Durchführen der Sensorvalidierung

Um eine Systemvalidierung durchzuführen, messen Sie eine Probe des Prozessmediums und vergleichen die Messung mit den Werten des Durchflussmessers.

Verwenden Sie folgende Formel, um einen Gerätefaktor zu berechnen:

Neuer Gerätefaktor = Konfigurierter Gerätefaktor × Externer Standard Istmessung Auswerteelektronik

Der gültige Bereich für Werte der Gerätefaktoren ist **0.8** bis **1.2**. Wenn der berechnete Gerätefaktor diese Grenzen überschreitet, setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.

Beispiel	Der Durchflussmesser ist das erste Mal installiert und überprüft. Der Durchflussmesser misst einen Massendurchfluss von 250,27 lb, die Referenzmessung beträgt 250 lb. Der Gerätefaktor für den Massendurchfluss wird wie folgt bestimmt:
	Massendurchfluss Gerätefaktor = $1 \times \frac{250}{250,27} = 0,9989$
	Der erste Massendurchfluss-Gerätefaktor ist 0,9989.
	Ein Jahr später wird der Durchflussmesser erneut überprüft. Der Durchflussmesser misst einen Massendurchfluss von 250,07 lb, die Referenzmessung beträgt 250,25 lb. Der neue Gerätefaktor für den Massendurchfluss wird wie folgt bestimmt:
	Massendurchfluss Gerätefaktor = $0,9989 \times \frac{250,25}{250,27} = 0,9996$
	Der neue Massendurchfluss-Gerätefaktor ist 0,9996.

Sie können die Gerätefaktoren mittels Feldbus-Host (Abbildung 3-13), ProLink II (Abbildung 3-14) oder dem Bedieninterface (Abbildung 3-15) einstellen.

Einführung

Abbildung 3-13 Gerätefaktoren – Feldbus-Host

Abbildung 3-14 Gerätefaktoren – ProLink II

Abbildung 3-15 Gerätefaktoren – Bedieninterface

3.6 Durchführen der Dichtekalibrierung

Die Dichtekalibrierung beinhaltet die folgenden Kalibrierpunkte:

- Alle Sensoren:
 - D1-Kalibrierung (niedrige Dichte)
 - D2-Kalibrierung (hohe Dichte)
- Nur Sensoren der T-Serie:
 - D3-Kalibrierung (optional)
 - D4-Kalibrierung (optional)

Bei Sensoren der T-Serie kann die optionale D3- und D4-Kalibrierung die Genauigkeit der Dichtemessung verbessern. Wenn Sie eine D3- und D4-Kalibrierung durchführen:

- Führen Sie keine D1- oder D2-Kalibrierung durch.
- Führen Sie die D3-Kalibrierung durch, wenn Sie über ein kalibriertes Medium verfügen.
- Führen Sie die D3- und D4-Kalibrierung durch, wenn Sie über zwei kalibrierte Medien verfügen (andere als Luft und Wasser).

Die ausgewählte Kalibrierung muss, wie hier beschrieben, ohne Unterbrechung durchgeführt werden.

Anmerkung: Bevor Sie die Kalibrierung durchführen, notieren Sie die aktuellen Kalibrierparameter. Wenn Sie ProLink II verwenden, können Sie die aktuelle Konfiguration als Datei auf dem PC speichern. Sollte die Kalibrierung fehlschlagen, können die alten Werte zurückgespeichert werden.

3.6.1 Vorbereiten auf die Dichtekalibrierung

Bevor Sie mit der Dichtekalibrierung beginnen, sehen Sie sich die Anforderungen dieses Abschnitts an.

Anforderungen an den Sensor

Während der Dichtekalibrierung muss der Sensor komplett mit dem Kalibriermedium gefüllt sein und der Durchfluss durch den Sensor muss so klein sein, wie es Ihre Anwendung ermöglicht. Dies wird normalerweise durch Schließen des auslaufseitig vom Sensor befindlichen Absperrventils erreicht. Anschließend füllen Sie den Sensor mit dem entsprechenden Medium.

Medien zur Dichtekalibrierung

Die D1- und D2-Dichtekalibrierung erfordert ein D1-Medium (niedrige Dichte) und ein D2-Medium (hohe Dichte). Hierfür können Sie Luft und Wasser nehmen. Zur Kalibrierung eines Sensors der T-Serie muss das D1-Medium Luft und das D2-Medium Wasser sein.

ACHTUNG

Bei Sensoren der T-Serie muss die D1-Kalibrierung mit Luft und die D2-Kalibrierung mit Wasser durchgeführt werden.

Für die D3-Dichtekalibrierung muss das Medium folgenden Anforderungen entsprechen:

- Min. Dichte von 0,6 g/cm³
- Min. Dichteabweichung von 0,1 g/cm³ zwischen D3-Medium und Wasser. Die Dichte des D3-Mediums kann höher oder niedriger als die Dichte des Wassers sein.

Für die D4-Dichtekalibrierung muss das Medium folgenden Anforderungen entsprechen:

- Min. Dichte von 0,6 g/cm³
- Min. Dichteabweichung von 0,1 g/cm³ zwischen D4-Medium und D3-Medium. Die Dichte des D4-Mediums muss höher sein als die Dichte des D3-Mediums.
- Min. Dichteabweichung von 0,1 g/cm³ zwischen D4-Medium und Wasser. Die Dichte des D4-Mediums kann höher oder niedriger als die Dichte des Wassers sein.

3.6.2 Vorgehensweise zur Dichtekalibrierung

Durchführen einer D1- und D2-Dichtekalibrierung:

- Mit Feldbus-Host, siehe Abbildung 3-16.
- Mit ProLink II, siehe Abbildung 3-17.

Abbildung 3-16 D1- und D2-Kalibrierung – Feldbus-Host

Ende

Abbildung 3-17 D1- und D2-Kalibrierung – ProLink II

Abbildung 3-18 D3 (oder D3 und D4) Kalibrierung (nur T-Serie) – Feldbus-Host

Abbildung 3-19 D3 (oder D3 und D4) Kalibrierung – ProLink II

Wenn die Kalibrierung fehlschlägt, siehe Abschnitt 6.5 Informationen zur Störungsanalyse und -beseitigung.

3.7 Durchführen der Temperaturkalibrierung

Die *Temperaturkalibrierung* ist eine Zweipunktkalibrierung: Kalibrierung von Temperatur-Offset und Temperatursteigung. Die Kalibrierung muss ohne Unterbrechung zu Ende geführt werden. Sie können die Temperatur mit Feldbus-Host oder ProLink II kalibrieren.

Abbildung 3-20 Temperaturkalibrierung – Feldbus-Host

Abbildung 3-21 Temperaturkalibrierung – ProLink II

 Wenn die Kalibrierung fehlschlägt, siehe Abschnitt 6.5 Informationen zur Störungsanalyse und -beseitigung.

nng

4.2 Konfigurationsübersicht Verwenden Sie die Übersic

Übersicht

4.1

Kapitel 4

Konfiguration

Verwenden Sie die Übersicht in Tabelle 4-1, um eine komplette oder teilweise Konfiguration der Auswerteelektronik durchzuführen.

Dieses Kapitel beschreibt, wie die Betriebseinstellungen der Auswerteelektronik geändert werden.

Anmerkung: Alle Vorgehensweisen in diesem Kapitel gehen davon aus, dass Sie eine Kommunikation mit der Auswerteelektronik hergestellt haben und dass Sie alle Sicherheitsanforderungen einhalten.

Siehe Anhang E und F.

Thema	Feldbus-Host	ProLink II	Display	Abschnitt
Gas-Standardvolumen	1	1		4.3
Messeinheiten	1	1	1	4.4
Spezial-Messeinheiten	1	1		4.5
Anwendung Mineralölmessung	1	1		4.6
Anwendung Konzentrationsmessung	1	1		4.7
Linearisierung	1			4.8
Ausgangsskalierung	1			4.9
Prozessalarme	1			4.10
Alarmstufe	1	1		4.11
Dämpfung	1	1		4.12
Schwallströmung	1	1		4.13
Abschaltungen	1	1		4.14
Durchflussrichtung	1	1		4.15
Geräteeinstellungen	1	1		4.16
Sensorparameter	1	1		4.17
Funktionen des Bedieninterface	1	1	1	4.18
PlantWeb-Alarme – Zeitüberschreitung	1	1		4-54
Schreibschutz-Modus	1	1	1	4.19
LD-Optimierung		1	1	4.20

4.3 Konfigurieren der Standard-Volumendurchflussmessung für Gas

Zwei Arten der Volumendurchflussmessung sind verfügbar:

- Flüssigkeitsvolumen (voreingestellt)
- Gas-Standardvolumen

Es kann immer nur eine Art der Volumendurchflussmessung ausgeführt werden (z.B. ist die Flüssigkeitsvolumen-Durchflussmessung aktiviert, ist die Gas-Standard-Volumendurchflussmessung deaktiviert und umgekehrt). Je nach der aktivierten Art der Volumendurchflussmessung sind verschiedene Einstellungen der Einheiten für die Volumendurchflussmessung möglich. Wenn Sie eine Gas-Volumendurchflusseinheit verwenden wollen, sind zusätzliche Konfigurationen erforderlich.

Anmerkung: Wenn Sie die Anwendung Mineralölmessung oder die Anwendung Konzentrationsmessung verwenden wollen, ist die Flüssigkeitsvolumen-Durchflussmessung erforderlich.

Der Gas-Standard-Volumendurchfluss kann mittels Feldbus-Host (Abbildung 4-1) oder ProLink II (Abbildung 4-2) konfiguriert werden. In allen Fällen müssen Sie:

- Gas-Standard-Volumendurchfluss aktivieren
- Die Standarddichte Ihres Gases spezifizieren (Dichte bei Referenzbedingungen)
- Die zu verwendende Messeinheit wählen (siehe Abschnitt 4.4)
- Den Wert der Schleichmengenabschaltung einstellen (siehe Abschnitt 4.14)

Anmerkung: Über das Bedieninterface können Sie eine verfügbare Volumenmesseinheit für die konfigurierte Volumendurchflussart wählen, Sie können aber nicht den Gas-Standard-Volumendurchfluss konfigurieren.

Abbildung 4-1 GSV – Feldbus-Host

Enable Gas Standard Volume – Auf *Aktivieren* setzen, um den Volumendurchfluss auf Gas-Standardvolumen einzustellen. Auf *Deaktivieren* setzen, um den Flüssigkeits-Volumendurchfluss zu verwenden. Abbildung 4-2 GSV – ProLink II

4.3.1 Konfigurieren der Gasdichte

Sie haben zwei Möglichkeiten, um die Standarddichte des Gases einzugeben, das Sie messen wollen (d. h. die Dichte des Gases unter Referenzbedingungen):

- Wenn Ihnen die Standarddichte bekannt ist, können Sie diesen Wert in die Auswerteelektronik eingeben. Für eine optimale Messgenauigkeit des Standardvolumens stellen Sie sicher, dass Sie die korrekte Standarddichte eingegeben haben und die Zusammensetzung des Mediums stabil ist. Sie können die Gasdichte mittels Feldbus-Host (Abbildung 4-3) oder ProLink II (Abbildung 4-4) eingeben.
- Wenn Ihnen die Standarddichte nicht bekannt ist und Sie ProLink II verwenden, können Sie den Gas Wizard (Abbildung 4-5) verwenden. Der Gas Wizard kann die Standarddichte des Gases berechnen, das Sie messen wollen.

```
Abbildung 4-3 Gasdichte – Feldbus-Host
```

MEASUREMENT	
	Gas Density

Gas Density – Auf die Standarddichte des Gases einstellen, das Sie messen wollen.

Abbildung 4-4 Gasdichte – ProLink II

4.4 Ändern der Messeinheiten

Die Auswerteelektronik speichert die Messeinheiten an drei verschiedenen Stellen: im MEASUREMENT Transducer Block, in den AI Blocks und im AO Block. Wenn Sie die Messeinheiten in den AI oder AO Blocks konfigurieren, wird der MEASUREMENT Block automatisch aktualisiert. Wenn Sie die Messeinheiten nur im MEASUREMENT Block konfigurieren, werden die AI und AO Blocks *nicht* aktualisiert. Dies resultiert im nachfolgenden Verhalten:

- Weil ProLink II und das Bedieninterface die im MEASUREMENT Block gespeicherten Einheiten speichern und abrufen, werden die in ProLink II oder dem Bedieninterface konfigurierten Einheiten *nicht* in den AI oder AO Blocks aktualisiert. Betroffene AI und AO Blocks zeigen einen Konfigurationsfehler an, wenn Einheiten im MEASUREMENT Block geändert wurden, nicht aber im AI oder AO Block.
- Die Konfiguration der Einheiten im MEASUREMENT Block mittels Feldbus-Host führt zum gleichen Resultat, wie wenn die Einheiten mit ProLink II oder dem Bedieninterface geändert wurden (d. h. die betroffenen AI oder AO Blocks zeigen einen Konfigurationsfehler, bis deren Einheiten ebenso geändert wurden).
- Die Konfiguration der Einheiten im AI oder AO Block mittels Feldbus-Host führt dazu, dass die Einheiten in ProLink II und im Bedieninterface korrekt aktualisiert werden.

Sie können die Messeinheiten mit Feldbus-Host (Abbildung 4-6), ProLink II (Abbildung 4-7) oder dem Bedieninterface (Abbildung 4-8) ändern. In den Tabellen 4-2 bis 4-7 finden Sie komplette Listen der Einheiten, die Sie für jede Prozessvariable einstellen können.

Anmerkung: Wenn die Auswerteelektronik für den Flüssigkeits-Volumendurchfluss konfiguriert ist, sind nur Flüssigkeits-Volumeneinheiten verfügbar (Tabelle 4-3). Wenn die Auswerteelektronik für den Gas-Volumendurchfluss konfiguriert ist, sind nur Gas-Volumeneinheiten verfügbar (Tabelle 4-4).

Anmerkung: Beim Ändern der Messeinheiten für eine Prozessvariable wird automatisch auch die zugehörige Zählereinheit geändert. Wird beispielsweise die Massendurchflusseinheit auf g/s gesetzt, wird auch die Massen-Zählereinheit automatisch auf g eingestellt.

Abbildung 4-6 Ändern der Messeinheiten – Feldbus-Host

Transducer Scale: Units Index – Auf die gewünschten Messeinheiten einstellen.

Process Value Scale: Units Index - Auf die gewünschten Messeinheiten einstellen.

(1) Wenn die Volumendurchflussart als Gas-Standardvolumen konfiguriert ist, erscheint die Liste mit den Standardgas-Volumendurchflusseinheiten.

Anmerkung: Sie müssen ebenso die Einheiten im zugehörigen AI Block ändern. Andernfalls wird ein Konfigurationsfehler im AI Block gesetzt.

Abbildung 4-8 Ändern der Messeinheiten – Bedieninterface

(1) Wenn die Volumendurchflussart als Gas-Standardvolumen konfiguriert ist, erscheint die Liste mit den Standardgas-Volumendurchflusseinheiten.

Anmerkung: Sie müssen ebenso die Einheiten im zugehörigen AI Block ändern. Andernfalls wird ein Konfigurationsfehler im AI Block gesetzt.

Tabelle 4-2 Massendurchfluss-Messeinheiten

macconduionnaccomment				
Feldbus-Host	ProLink II	Display	Beschreibung der Einheit	
g/s	g/s	G/S	Gramm pro Sekunde	
g/min	g/min	G/MIN	Gramm pro Minute	
g/h	g/h	G/H	Gramm pro Stunde	
kg/s	kg/s	KG/S	Kilogramm pro Sekunde	
kg/min	kg/min	KG/MIN	Kilogramm pro Minute	
kg/h	kg/hr	KG/H	Kilogramm pro Stunde	
kg/d	kg/day	KG/D	Kilogramm pro Tag	
t/min	mTon/min	T/MIN	Metrische Tonnen pro Minute	
t/h	mTon/hr	T/H	Metrische Tonnen pro Stunde	

Massendurchflusseinheit

Tabelle 4-2	Massendurchfluss-Messeinheiten (Fortsetzung)
-------------	--

Feldbus-Host	ProLink II	Display	Beschreibung der Einheit
t/d	mTon/day	T/D	Metrische Tonnen pro Tag
lb/s	lbs/s	LB/S	Pounds pro Sekunde
lb/min	lbs/min	LB/MIN	Pounds pro Minute
lb/h	lbs/hr	LB/H	Pounds pro Stunde
lb/d	lbs/day	LB/D	Pounds pro Tag
STon/min	sTon/min	ST/MIN	Amerikanische Tonnen (2000 Pounds) pro Minute
STon/h	sTon/hr	ST/H	Amerikanische Tonnen (2000 Pounds) pro Stunde
STon/d	sTon/day	ST/D	Amerikanische Tonnen (2000 Pounds) pro Tag
LTon/h	ITon/hr	LT/H	Britische Tonnen (2240 Pounds) pro Stunde
LTon/d	ITon/day	LT/D	Britische Tonnen (2240 Pounds) pro Tag

Massendurchflusseinheit

Tabelle 4-3 Volumendurchfluss-Messeinheiten – Flüssigkeiten

Volumendurchflusseinheit

Feldbus-Host	ProLink II	Display	Beschreibung der Einheit
CFS	ft3/sec	FT3/S	Kubikfuß pro Sekunde
CFM	ft3/min	CUF/MN	Kubikfuß pro Minute
CFH	ft3/hr	CUFT/H	Kubikfuß pro Stunde
ft ³ /day	ft3/day	CUFT/D	Kubikfuß pro Tag
m³/s	m3/sec	M3/S	Kubikmeter pro Sekunde
m³/min	m3/min	M3/MIN	Kubikmeter pro Minute
m³/h	m3/hr	M3/H	Kubikmeter pro Stunde
m³/d	m3/day	M3/D	Kubikmeter pro Tag
gal/s	US gal/sec	USGPS	U.SGallonen pro Sekunde
GPM	US gal/min	USGPM	U.SGallonen pro Minute
gal/h	US gal/hr	USGPH	U.SGallonen pro Stunde
gal/d	US gal/d	USGPD	U.SGallonen pro Tag
Mgal/d	mil US gal/day	MILG/D	Millionen U.SGallonen pro Tag
L/s	l/sec	L/S	Liter pro Sekunde
L/min	l/min	L/MIN	Liter pro Minute
L/h	l/hr	L/H	Liter pro Stunde
ML/d	mil I/day	MILL/D	Millionen Liter pro Tag
ImpGal/s	Imp gal/sec	UKGPS	Imperial-Gallonen pro Sekunde
ImpGal/min	Imp gal/min	UKGPM	Imperial-Gallonen pro Minute
ImpGal/h	Imp gal/hr	UKGPH	Imperial-Gallonen pro Stunde
ImpGal/d	Imp gal/day	UKGPD	Imperial-Gallonen pro Tag
bbl/s	barrels/sec	BRL/S	Barrel pro Sekunde ⁽¹⁾

Tabelle 4-3 Volumendurchfluss-Messeinheiten – Flüssigkeiten (Fortsetzung)

Feldbus-Host	ProLink II	Display	Beschreibung der Einheit	
bbl/min	barrels/min	BBL/MN	Barrel pro Minute ⁽¹⁾	
bbl/h	barrels/hr	BBL/H	Barrel pro Stunde ⁽¹⁾	
bbl/d	barrels/day	BBL/D	Barrel pro Tag ⁽¹⁾	
Bbl (US Beer)/d	Beer barrels/sec	BBBL/S	Beer Barrel pro Sekunde ⁽²⁾	
Bbl (US Beer)/min	Beer barrels/min	BBBL/M	Beer Barrel pro Minute ⁽²⁾	
Bbl (US Beer)/h	Beer barrels/hr	BBBL/H	Beer Barrel pro Stunde ⁽²⁾	
Bbl (US Beer)/d	Beer barrels/day	BBBL/D	Beer Barrel pro Tag ⁽²⁾	

Volumendurchflusseinheit

(1) Einheit basiert auf Ölfässern (42 U.S.-Gallonen).

(2) Einheit basiert auf Bierfässern (31 U.S.-Gallonen).

Volumendurchfluss-Messeinheiten – Gas **Tabelle 4-4**

Feldbus-Host	ProLink II	Display	Beschreibung der Einheit
Nm³/s	Nm3/sec	NM3/S	Normkubikmeter pro Sekunde
Nm ³ /min	Nm3/min	NM3/MN	Normkubikmeter pro Minute
Nm³/h	Nm3/hr NM3/H Normkubikmeter pro S		Normkubikmeter pro Stunde
Nm³/d	Nm3/day	NM3/D	Normkubikmeter pro Tag
NL/s	NLPS	NLPS	Normliter pro Sekunde
NL/min	NLPM	NLPM	Normliter pro Minute
NL/h	NLPH	NLPH	Normliter pro Stunde
NL/d	NLPD	NLPD	Normliter pro Tag
SCFM	SCFM	SCFM	Standard-Kubikfuß pro Minute
SCFH	SCFH	SCFH	Standard-Kubikfuß pro Stunde
Sm ³ /s	Sm3/S	SM3/S	Standard-Kubikmeter pro Sekunde
Sm ³ /min	Sm3/min	SM3/MN	Standard-Kubikmeter pro Minute
Sm ³ /h	Sm3/hr	SM3/H	Standard-Kubikmeter pro Stunde
Sm ³ /d	Sm3/day	SM3/D	Standard-Kubikmeter pro Tag
SL/s	SLPS	SLPS	Standardliter pro Sekunde
SL/min	SLPM	SLPM	Standardliter pro Minute
SL/h	SLPH	SLPH	Standardliter pro Stunde
SL/d	SLPD	SLPD	Standardliter pro Tag

Volumendurchflusseinheit

	Dichte-Einhe	it	
Feldbus-Host	ProLink II	Display	Beschreibung der Einheit
g/cm ³	g/cm3	G/CM3	Gramm pro Kubikzentimeter
g/L	g/l	G/L	Gramm pro Liter
g/ml	g/ml	G/ML	Gramm pro Milliliter
kg/L	kg/l	KG/L	Kilogramm pro Liter
kg/m ³	kg/m3	KG/M3	Kilogramm pro Kubikmeter
lb/gal	lbs/Usgal	LB/GAL	Pounds pro U.SGallone
lb/ft ³	lbs/ft3	LB/CUF	Pounds pro Kubikfuß
lb/in ³	lbs/in3	LB/CUI	Pounds pro Kubikzoll
STon/yd ³	sT/yd3	ST/CUY	Amerikanische Tonne pro Kubikyard
degAPI	degAPI	D API	Grad API
SGU	SGU	SGU	Messeinheit der spezifischen Dichte (nicht temperaturkorrigiert)

Tabelle 4-5 Dichte-Messeinheiten

Tabelle 4-6 Temperatur-Messeinheiten

Temperatureinheit

Feldbus-Host	ProLink II	Display	Beschreibung der Einheit
°C	°C	°C	Grad Celsius
°F	°F	°F	Grad Fahrenheit
°R	°R	°R	Grad Rankine
К	°K	°K	Kelvin

Obwohl die Druckeinheiten in Tabelle 4-7 aufgelistet sind, misst die Auswerteelektronik den Druck nicht. Diese Einheiten dienen zur Konfiguration der externen Druckkompensation. Siehe Abschnitt 2.5.

Tabelle 4-7 Druck-Messeinheiten

	Druckeinheit		
Feldbus-Host	ProLink II	Display	Beschreibung der Einheit
ftH2O (68°F)	Ft Water @ 68°F	FTH2O	Fuß Wasser bei 68 °F
inH2O (4°C)	In Water @ 4°C	INW4C	Zoll Wasser bei 4 °C
inH2O (68°F)	In Water @ 68°F	INH2O	Zoll Wasser bei 68 °F
mmH2O (4°C)	mm Water @ 4°C	MMW4C	Millimeter Wasser bei 4 °C
mmH2O (68°F)	mm Water @ 68°F	mmH2O	Millimeter Wasser bei 68 °F
inHg (0°C)	In Mercury @ 0°C	INHG	Zoll Quecksilber bei 0 °C
mmHg (0°C)	mm Mercury @ 0°C	mmHG	Millimeter Quecksilber bei 0 °C
psi	PSI	PSI	Pounds pro Quadratzoll
bar	bar	BAR	bar
mbar	millibar	mBAR	Millibar

	Druckeinheit		
Feldbus-Host	ProLink II	Display	Beschreibung der Einheit
g/cm ²	g/cm2	G/SCM	Gramm pro Quadratzentimeter
kg/cm ²	kg/cm2	KG/SCM	Kilogramm pro Quadratzentimeter
Ра	pascals	PA	Pascal
MPa	megapascals	MPA	Megapascal
kPa	Kilopascals	KPA	Kilopascal
torr	Torr @ 0C	TORR	Torr bei 0 °C
atm	atms	ATM	Atmosphäre

Tabelle 4-7 Druck-Messeinheiten (Fortsetzung)

4.5 Erstellen von Spezial-Messeinheiten

Sollten Sie eine nicht standardisierte Messeinheit benötigen, so können Sie eine Spezial-Messeinheit erstellen. Es stehen zwei Methoden zur Erstellung einer Spezialeinheit zur Verfügung:

- Verwendung einer Spezialeinheit mittels MEASUREMENT Transducer Block. Diese Methode wird in diesem Abschnitt beschrieben.
- Verwenden der Parameter Transducer Scale, Output Scale und Linearization eines AI Function Blocks. Diese Methode wird nicht in diesem Abschnitt beschrieben. Siehe Abschnitt 4.8 und 4.9 sowie Handbuch *FOUNDATION Fieldbus Blocks*, verfügbar auf der Rosemount Website (www.rosemount.com), bezüglich Informationen über die Erstellung von Spezialeinheiten mit dieser Methode.

Der MEASUREMENT Transducer Block unterstützt eine Spezialeinheit für Massendurchfluss, eine für Flüssigkeits-Volumendurchfluss und eine für Gas-Volumendurchfluss. Eine Spezial-Messeinheit besteht aus:

- *Basiseinheit* einer Kombination aus:
 - *Basis-Massen-* oder *Volumeneinheit* eine Standard Messeinheit, die die Auswerteelektronik erkennt (z. B. kg, m³)
 - Basis-Zeiteinheit eine Zeiteinheit, die die Auswerteelektronik erkennt (z. B. Sekunden, Tage)
- *Umrechnungsfaktor* eine Zahl, durch die die Basiseinheit geteilt wird, um sie zur Spezialeinheit umzurechnen
- *Spezialeinheit* eine nicht standardisierte Volumendurchfluss- oder Massendurchflusseinheit, die von der Auswerteelektronik ausgegeben werden soll

Die oben aufgeführten Ausdrücke haben folgende formelmäßige Beziehung:

x[Basiseinheiten] = y[Spezialeinheiten]

Umrechnungsfaktor = <u>x[Basiseinheiten]</u> <u>y[Spezialeinheiten]</u>

Erstellen einer Spezialeinheit:

- 1. Verwenden Sie die einfachste Massen-, Volumen- und Zeit-Basiseinheit für Ihre Spezialeinheit. Zum Beispiel ist die einfachste Basiseinheit für die Spezial Volumendurchflusseinheit *Pints pro Minute* Gallonen pro Minute:
 - a. Basiseinheit Volumen: Gallonen
 - b. Basiseinheit Zeit: Minute

2. Umrechnungsfaktor berechnen:

 $\frac{1 \text{ Gallone pro Minute}}{8 \text{ Pint pro Minute}} = 0,125$

- 3. Geben Sie der neuen Massen- oder Volumendurchfluss-Spezialeinheit und ihrer entsprechenden Zählereinheit einen Namen:
 - a. Name der Volumendurchfluss-Spezialeinheit: Pint/min
 - b. Name der Volumen-Zählereinheit: Pints

Anmerkung: Der Name der Spezialeinheit kann bis zu 8 Zeichen lang sein, aber im Display erscheinen nur die ersten 5 Zeichen.

Spezialeinheiten können mittels Feldbus-Host (Abbildung 4-9, 4-10 und 4-11) oder ProLink II (Abbildung 4-12) erstellt werden.

Abbildung 4-9 Spezialeinheiten für Massendurchfluss – Feldbus-Host

		Mass flow special units base
		Mass flow special units time
MEASUREMENT		Mass flow special units conv
		Mass flow special units str
		Mass Tot/Inv Special Unit Str
Mass flow special uni	ite h	asa _ Auf aina Massanainhait ainstallan

Mass new special anno base		Auf eine Masseriennen einstellen.					
Mass flow special units time	_	Auf eine Zeiteinheit einstellen.					
Mass flow special units conv	-	Auf den Umrechnungsfaktor einstellen. Wenn dieser Parameter gleich 1 ist, verwendet die Auswerteelektronik normale Masseneinheiten. Wenn dieser Parameter nicht gleich 1 ist, verwendet die Auswerteelektronik Spezial-Masseneinheiten.					
Mass flow special units str	-	Auf den Namen der Spezialeinheit einstellen. Der Name der Einheit kann bis zu 8 Zeichen lang sein (es werden jedoch nur die ersten 5 angezeigt).					
Mass Tot/Inv Special Unit Str	-	Auf den Namen der Zähler-Spezialeinheit einstellen. Der Name der Einheit kann bis zu 8 Zeichen lang sein (es werden jedoch nur die ersten 5 angezeigt).					
		Vol flow sp	pe	cial units base			
-----------------------------------	-----------------------------	-----------------------------	---	--	--	--	--
		Vol flow special units time					
MEASUREMENT	Vol flow special units conv						
		Vol flow sp	Vol flow special units str				
		Volume To	Volume Tot/Inv Special Unit Str				
		1					
Vol flow special units	bas	e –		Auf eine Flüssigkeits-Volumeneinheit einstellen.			
Vol flow special units time		e –	•	Auf eine Zeiteinheit einstellen.			
Vol flow special units conv		v –		Auf den Umrechnungsfaktor einstellen. Wenn dieser Parameter gleich 1 ist, verwendet die Auswerteelektronik normale Flüssigkeits-Volumeneinheiten. Wenn dieser Parameter nicht gleich 1 ist, verwendet die Auswerteelektronik Flüssigkeitsvolumen-Spezialeinheiten.			
Vol flow special units str		-		Auf den Namen der Spezialeinheit einstellen. Der Name der Einheit kann bis zu 8 Zeichen lang sein (es werden jedoch nur die ersten 5 angezeigt).			
Volume Tot/Inv Special Unit Str –			Auf den Namen der Zähler-Spezialeinheit einstellen. Der Name der Einheit kann bis zu 8 Zeichen lang sein (es werden jedoch nur die ersten 5 angezeigt).				

Abbildung 4-10 Spezialeinheiten für Flüssigkeits-Volumendurchfluss – Feldbus-Host

Abbildung 4-11 Spezialeinheiten für Gas-Volumendurchfluss – Feldbus-Host

	Std G	as Vol Flow Special Units Base
	Std G	as Vol Flow Special Units Time
MEASUREMENT	Std G	as Vol Flow Special Units Factor
	Std G	as Vol Flow Special Units Text
	Std G	as Vol Total Special Units Text

Std Gas Vol Flow Special Units Base	-	Auf die Gas-Volumeneinheit einstellen.
Std Gas Vol Flow Special Units Time	_	Auf eine Zeiteinheit einstellen.
Std Gas Vol Flow Special Units Factor	-	Auf den Umrechnungsfaktor einstellen. Wenn dieser Parameter gleich 1 ist, verwendet die Auswerteelektronik normale Gas-Volumeneinheiten. Wenn dieser Parameter nicht gleich 1 ist, verwendet die Auswerteelektronik Gasvolumen-Spezialeinheiten.
Std Gas Vol Flow Special Units Text	-	Auf den Namen der Spezialeinheit einstellen. Der Name der Einheit kann bis zu 8 Zeichen lang sein (es werden jedoch nur die ersten 5 angezeigt).
Std Gas Vol Total Special Units Text	-	Auf den Namen der Zähler-Spezialeinheit einstellen. Der Name der Einheit kann bis zu 8 Zeichen lang sein (es werden jedoch nur die ersten 5 angezeigt).

Abbildung 4-12 Massen- und Volumen-Spezialeinheiten – ProLink II

4.6 Konfigurieren der Mineralölmessungs-Anwendung (API)

Die *API Parameter* bestimmen die Werte, die für die API-relevanten Berechnungen benötigt werden. Die API Parameter sind nur dann verfügbar, wenn die Anwendung Mineralölmessung in Ihrer Auswerteelektronik aktiviert ist.

Anmerkung: Die Anwendung Mineralölmessung benötigt Flüssigkeitsvolumen-Messeinheiten. Wenn Sie die API Prozessvariablen verwenden möchten, stellen Sie sicher, dass die Flüssigkeitsvolumen-Durchflussmessung spezifiziert ist. Siehe Abschnitt 4.3.

4.6.1 Über die Anwendung der Mineralölmessung

Einige Anwendungen, die den Volumendurchfluss einer Flüssigkeit oder die Flüssigkeitsdichte messen, sind besonders temperaturempfindlich und müssen den Normen des American Petroleum Institute (API) für Messungen entsprechen. Die Anwendung Mineralölmessung ermöglicht die Messung *Temperaturkorrigiertes Flüssigkeitsvolumen* oder CTL (Correction of Temperature on volume of Liquids).

Ausdrücke und Definitionen

Folgende Ausdrücke und Definitionen sind für Anwendungen bei der Mineralölmessung relevant:

- API American Petroleum Institute
- *CTL* Correction of Temperature on volume of Liquids, d. h. temperaturkorrigiertes Flüssigkeitsvolumen. Der CTL-Wert wird benötigt, um den VCF-Wert zu berechnen
- TEC Thermal Expansion Coefficient, d. h. Wärmeausdehnungskoeffizient
- *VCF* Volume Correction Factor, d. h. Volumenkorrekturfaktor. Der Korrekturfaktor ist auf die Volumen-Prozessvariable anzuwenden. Der VCF kann berechnet werden, nachdem der CTL abgeleitet wurde.

Methoden zur Ableitung des CTL

Es gibt zwei Methoden zur Ableitung des CTL:

- Methode 1 basiert auf der gemessenen Dichte und Temperatur.
- Methode 2 basiert auf einer vom Anwender gelieferten Dichte (oder in manchen Fällen dem Wärmeausdehnungskoeffizienten) und der gemessenen Temperatur.

Mineralölmessung – Referenztabellen

Referenztabellen sind geordnet nach Referenztemperatur, CTL-Ableitungsmethode, Flüssigkeitsart und Dichteeinheit. Die hier ausgewählte Tabelle regelt alle übrigen Optionen.

- Referenztemperatur:
 - Wenn Sie eine Tabelle 5x, 6x, 23x oder 24x spezifizieren, beträgt die vorgegebene Referenztemperatur 60 °F und kann nicht geändert werden.
 - Wenn Sie eine Tabelle 53x oder 54x spezifizieren, beträgt die vorgegebene Referenztemperatur 15 °C. Wie für einige Standorte empfohlen, kann die Referenztemperatur hier geändert werden (zum Beispiel auf 14,0 oder 14,5 °C).
- CTL-Ableitungsmethode:
 - Wenn Sie eine Tabelle mit ungerader Nummer spezifizieren (5, 23 oder 53), wird CTL mittels der Methode 1, wie oben beschrieben, abgeleitet.
 - Wenn Sie eine Tabelle mit gerader Nummer spezifizieren (6, 24 oder 54), wird CTL mittels der Methode 2, wie oben beschrieben, abgeleitet.
- Die verwendeten Buchstaben *A*, *B*, *C* oder *D* für den Tabellennamen definieren die Flüssigkeitsart, für die die Tabelle erstellt wurde:
 - A Tabellen sind anzuwenden auf allgemeine Rohöl- und JP4-Anwendungen.
 - *B* Tabellen sind anzuwenden auf allgemeine Produkte.
 - *C* Tabellen sind anzuwenden auf Flüssigkeiten mit konstanter Basisdichte oder bekanntem Wärmeausdehnungskoeffizient.
 - *D* Tabellen sind anzuwenden auf Schmieröle.
- Unterschiedliche Tabellen verwenden verschiedene Dichteeinheiten:
 - Grad API
 - Relative Dichte (SG)
 - Basisdichte (kg/m³)

Tabelle 4-8 fasst diese Optionen zusammen.

	CTL-Ablei-		Dichteeinheit und -bereich			
Tabelle methode		Basistemperatur	Grad API	Basisdichte	Relative Dichte	
5A	Methode 1	60 °F, nicht konfigurierbar	0 bis +100			
5B	Methode 1	60 °F, nicht konfigurierbar	0 bis +85			
5D	Methode 1	60 °F, nicht konfigurierbar	-10 bis +40			
23A	Methode 1	60 °F, nicht konfigurierbar			0,6110 bis 1,0760	
23B	Methode 1	60 °F, nicht konfigurierbar			0,6535 bis 1,0760	
23D	Methode 1	60 °F, nicht konfigurierbar			0,8520 bis 1,1640	
53A	Methode 1	15 °C, konfigurierbar		610 bis 1075 kg/m³		
53B	Methode 1	15 °C, konfigurierbar		653 bis 1075 kg/m³		
53D	Methode 1	15 °C, konfigurierbar		825 bis 1164 kg/m³		
			Referenztempe	eratur	Unterstützt	
6C	Methode 2	60 °F, nicht konfigurierbar	60 °F		Grad API	
24C	Methode 2	60 °F, nicht konfigurierbar	60 °F		Relative Dichte	
54C	Methode 2	15 °C, konfigurierbar	15 °C		Basisdichte in kg/m ³	

Tabelle 4-8 Mineralölmessung – Referenztabellen für Temperatur

4.6.2 Konfigurationsverfahren

Die PM-Konfigurationsparameter sind aufgelistet und definiert in Tabelle 4-9.

Tabelle 4-9 Parameter der Mineralölmessung

Variable	Beschreibung
Table type	Spezifiziert die Tabelle, die für die Einheit der Referenztemperatur und -dichte verwendet werden soll. Wählen Sie die Tabelle, die zu Ihren Anforderungen passt. Siehe <i>Mineralölmessung – Referenztabellen</i> .
User defined TEC ⁽¹⁾	Wärmeausdehnungskoeffizient. Wert eingeben, der für die Berechnung des CTL verwendet werden soll.
Temperature units ⁽²⁾	Schreibgeschützt. Zeigt die verwendete Einheit der Referenztemperatur in der Referenztabelle.
Density units	Schreibgeschützt. Zeigt die verwendete Einheit der Referenzdichte in der Referenztabelle.
Reference temperature	 Schreibgeschützt, es sei denn, Table Type ist auf 53x oder 54x eingestellt. Wenn konfigurierbar: Referenztemperatur für die Berechnung des CTL spezifizieren. Referenztemperatur in °C eingeben.

(1) Konfigurierbar, wenn der Tabellentyp auf 6C, 24C oder 54C eingestellt ist.

(2) Für die meisten Fälle sollten die Temperatureinheit der PM-Referenztabelle auch für die Temperatur, die die Auswerteelektronik für die allgemeine Verarbeitung verwendet, konfiguriert werden. Zur Konfiguration der Temperatureinheit siehe Abschnitt 4.4.

Festlegen des Tabellentyps

Sie können den PM-Tabellentyp mittels Feldbus-Host (Abbildung 4-13) oder ProLink II (Abbildung 4-14) festlegen.

Abbildung 4-13 Mineralölmessung Tabellentyp – Feldbus-Host

PM Table Type – Den gewünschten Tabellentyp festlegen.

Abbildung 4-14 Mineralölmessung Tabellentyp – ProLink II

Einstellen der Referenztemperatur

Für den Temperaturwert, der zur CTL-Berechnung verwendet werden soll, können Sie die Temperaturdaten vom Sensor oder die externe Temperaturkompensation konfigurieren, um entweder einen statischen Temperaturwert oder Temperaturdaten von einem externen Temperaturmessgerät zu verwenden.

- Um den Temperaturwert vom Sensor zu verwenden, müssen keine Maßnahmen ergriffen werden.
- Zum Konfigurieren der externen Temperaturkompensation siehe Abschnitt 2.6.

Sie können die Referenztemperatur mittels Feldbus-Host (Abbildung 4-15) oder ProLink II (Abbildung 4-16) festlegen.

Abbildung 4-15 Mineralölmessung Referenztemperatur – Feldbus-Host

Abbildung 4-16 Mineralölmessung Referenztemperatur – ProLink II

Einstellen des Wärmeausdehnungskoeffizienten

Wenn die CTL-Ableitungsmethode für den API-Tabellentyp Methode 2 ist, muss der Wärmeausdehnungskoeffizient (TEC) eingestellt werden. Sie können TEC mittels Feldbus-Host (Abbildung 4-17) oder ProLink II (Abbildung 4-18) konfigurieren.

User Defined TEC – Auf den gewünschten Wärmeausdehnungskoeffizient einstellen.

Abbildung 4-18 Mineralölmessung – ProLink II

4.7 Konfigurieren der Anwendung Konzentrationsmessung

Micro Motion Sensoren liefern eine direkte Messung der Dichte, nicht jedoch der Konzentration. Die Anwendung Konzentrationsmessung berechnet die Prozessvariablen der Konzentrationsmessung, wie die Konzentration oder die Dichte bei Referenztemperatur von den Dichte-Prozessdaten, mit entsprechender Temperaturkorrektur.

Anmerkung: Detaillierte Informationen über die Anwendung Konzentrationsmessung finden Sie im Handbuch mit dem Titel Micro Motion Anwendung Erweiterte Dichte: Funktionsprinzip, Konfiguration und Betrieb.

Anmerkung: Die Anwendung Konzentrationsmessung benötigt Flüssigkeitsvolumeneinheiten. Wenn Sie die Prozessvariablen der Konzentrationsmessung verwenden möchten, stellen Sie sicher, dass die Flüssigkeitsvolumen-Durchflussmessung spezifiziert ist. Siehe Abschnitt 4.3.

4.7.1 Über die Anwendung der Konzentrationsmessung

Zur Berechnung der Konzentrationsmessung wird eine Konzentrationsmessungs-Kurve benötigt, welche das Verhältnis zwischen Temperatur, Konzentration und Dichte für das gemessene Prozessmedium spezifiziert. Micro Motion liefert einen Satz mit sechs Standardkurven für die Konzentrationsmessung (siehe Tabelle 4-10). Entspricht keine dieser Kurven Ihrem Prozessmedium, können Sie eine Kurve konfigurieren oder eine speziell konfigurierte Kurve von Micro Motion erwerben.

Die abgeleitete Variable, die während der Konfiguration spezifiziert wurde, steuert die durchzuführende Art der Konzentrationsmessung. Jede abgeleitete Variable ermöglicht die Berechnung einer Teilmenge von Prozessvariablen der Konzentrationsmessung (siehe Tabelle 4-11). Die verfügbaren Prozessvariablen der Konzentrationsmessung können, wie Massendurchfluss, Volumendurchfluss und andere Prozessvariablen, zur Prozesssteuerung verwendet werden. Zum Beispiel kann für die Prozessvariable der Konzentrationsmessung ein Ereignis definiert werden.

- Für alle Standardkurven ist die abgeleitete Variable Mass Conc (Dens).
- Für konfigurierte Kurven kann die abgeleitete Variable eine der Variablen sein die in Tabelle 4-11 aufgelistet sind.

Die Auswerteelektronik kann zu jeder Zeit sechs Kurven speichern, aber es kann immer nur eine Kurve aktiv sein (zur Messung verwendet werden). Alle Kurven in der Auswerteelektronik müssen die gleiche abgeleitete Variable verwenden.

 Tabelle 4-10
 Standardkurven und zugehörige Messeinheiten

Name	Beschreibung	Dichte-Einheit	Temperatureinheit
Deg Balling	Die Kurve repräsentiert den prozentualen Gewichtsanteil des Extrakts in der Lösung, basierend auf °Balling. Beispiel, wenn eine Bierwürze 10 °Balling hat und der Extrakt in der Lösung 100 % Saccharose ist, so ist der Extrakt 10 % vom Gesamtgewicht	g/cm ³	°F
Deg Brix	Eine Flüssigkeitsmessskala für Saccharoselösungen, die den prozentualen Gewichtsanteil der Saccharaose an der Lösung bei gegebener Temperatur angibt. Zum Beispiel, 40 kg Saccharose gemischt mit 60 kg Wasser ergeben eine 40 °Brix-Lösung.	g/cm³	°C
Deg Plato	Die Kurve repräsentiert den prozentualen Gewichtsanteil des Extrakts in der Lösung, basierend auf °Plato. Beispiel, wenn eine Bierwürze 10 °Plato hat und der Extrakt in der Lösung 100 % Saccharose ist, so ist der Extrakt 10 % der Gesamtmasse.	g/cm³	°F
HFCS 42	Eine Flüssigkeitsmessskala für HFCS 42 (High Fructose Corn Syrup, Maissirup mit hohem Fruchtzuckergehalt) Lösung, die den prozentualen Gewichtsanteil der HFCS-Lösung angibt.	g/cm ³	°C
HFCS 55	Eine Flüssigkeitsmessskala für HFCS 55 (High Fructose Corn Syrup, Maissirup mit hohem Fruchtzuckergehalt) Lösung, die den prozentualen Gewichtsanteil der HFCS-Lösung angibt.	g/cm³	°C
HFCS 90	Eine Flüssigkeitsmessskala für HFCS 90 (High Fructose Corn Syrup, Maissirup mit hohem Fruchtzuckergehalt) Lösung, die den prozentualen Gewichtsanteil der HFCS-Lösung angibt.	g/cm ³	°C

Tabelle 4-11 Abgeleitete Variablen und verfügbare Prozessvariablen

		Verf	ügbare P	rozessvariable	en	
Abgeleitete Variable – ProLink II Bezeichnung und Definition	Dichte bei Referenz- temperatur	Standard- Volumen durchflus s	Spezifi- sche Dichte	Konzentration	Netto-M assendu rchfluss	Netto- Volumend urchfluss
Density @ Ref Dichte bei Referenztemperatur Masse/Einheit Volumen, korrigiert auf eine gegebene Referenztemperatur	√	1				
SG Spezifische Dichte Verhältnis der Dichte des Prozessmediums bei gegebener Temperatur zur Dichte von Wasser bei gegebener Temperatur. Die beiden gegebenen Temperaturbedingungen müssen nicht gleich sein.	1	1	5			
Mass Conc (Dens) Massekonzentration abgeleitet von der Referenzdichte Prozentualer Masseanteil eines (gelösten) Stoffes in einer Lösung, abgeleitet von der Referenzdichte	1	5		1	v	
Mass Conc (SG) Massekonzentration abgeleitet von der spezifischen Dichte Prozentualer Masseanteil eines (gelösten) Stoffes in einer Lösung, abgeleitet von der spezifischen Dichte	 Image: A start of the start of	J	<i>√</i>	V	1	
Volume Conc (Dens) Volumenkonzentration abgeleitet von der Referenzdichte Prozentualer Volumenanteil eines (gelösten) Stoffes in einer Lösung, abgeleitet von der Referenzdichte	✓	1		1		✓
Volume Conc (SG) Volumenkonzentration abgeleitet von der spezifischen Dichte Prozentualer Volumenanteil eines (gelösten) Stoffes in einer Lösung, abgeleitet von der spezifischen Dichte	 Image: A start of the start of	V	1	V		
Conc (Dens) Konzentration, abgeleitet von der Referenzdichte Masse, Volumen, Gewicht oder Stoffmenge eines (gelösten) Stoffes, proportional zur Lösung, abgeleitet von der Referenzdichte	1	/		V		
Conc (SG) <i>Konzentration, abgeleitet von der</i> <i>spezifischen Dichte</i> Masse, Volumen, Gewicht oder Stoffmenge eines (gelösten) Stoffes, proportional zur Lösung, abgeleitet von der spezifischen Dichte	<i>,</i>	7	V			

4.7.2 Konfigurationsverfahren

Die kompletten Anweisungen zur Konfiguration der Anwendung Konzentrationsmessung finden Sie im Handbuch mit dem Titel *Micro Motion Anwendung Erweiterte Dichte: Funktionsprinzip, Konfiguration und Betrieb.*

Anmerkung: Das Handbuch für die Konzentrationsmessung verwendet ProLink II standardmäßig als Konfigurations-Hilfsmittel für die Anwendung Konzentrationsmessung. Da die Feldbus-Parameter denen von ProLink II sehr ähnlich sind, können Sie den Anweisungen für ProLink II folgen und an Ihren Host anpassen. Alle Parameter, die die Anwendung Konzentrationsmessung betreffen, finden Sie im CONCENTRATION MEASUREMENT Transducer Block (siehe Anhang B).

Bei der Konfiguration wird normalerweise einfach die Anwendung Konzentrationsmessung auf die Verwendung einer Standardkurve eingerichtet. Folgende Schritte sind erforderlich:

- 1. Stellen Sie die Dichte-Einheit der Auswerteelektronik entsprechend der der verwendeten Kurve ein (wie in Tabelle 4-10 aufgeführt).
- 2. Stellen Sie die Temperatureinheit der Auswerteelektronik entsprechend der der verwendeten Kurve ein (wie in Tabelle 4-10 aufgeführt).
- 3. Stellen Sie die abgeleitete Variable auf Mass Conc (Dens) ein.
- 4. Spezifizieren Sie die aktive Kurve.

4.8 Ändern der Linearisierung

Die *Linearisierung* wandelt eine Prozessvariable in verschiedene Messeinheiten sowie in eine neue Skalierung um. Ausgangsskalierung und Linearisierung stehen folgendermaßen zueinander:

- Wenn der Parameter Linearization eines AI Blocks auf *Direct* gesetzt ist, gibt der AI Block die Prozessvariablen direkt vom MEASUREMENT Transducer Block aus. Die Auswerteelektronik wird mit allen AI Blocks auf Direct Linearization ausgeliefert.
- Wenn der Parameter Linearization eines AI Blocks auf *Indirect* gesetzt ist, wird der Wert vom MEASUREMENT Transducer Block entsprechend dem Parameter Output Scale umgewandelt (siehe Abschnitt 4.9).

Zusätzlich, wenn der AI Block Ausgang entsprechend den Transducer Scale Parametern umgerechnet wird, aber mit 1/x Umwandlung, d. h, wenn die obere Grenze der Transducer-Skalierung auf 50 % eingestellt wird, wird der Ausgang verdoppelt.

Die indirekte Linearisierung kann zusammen mit der Ausgangsskalierung und der Transducer-Skalierung verwendet werden, um Spezial-Messeinheiten zu erstellen. Siehe Abschnitt 4.9 und Handbuch *FOUNDATION Fieldbus Blocks*, verfügbar auf der Rosemount Website (www.rosemount.com), bezüglich Informationen über die Erstellung von Spezialeinheiten mit dieser Methode.

• Wenn der Parameter Linearization eines AI Blocks auf *Indirect square root* gesetzt ist, gibt der AI Block die Wurzel des skalierten Ausgangs aus. Generell ist die Indirect square root Linearisierung nicht für Coriolis-Messsysteme geeignet.

Die Einstellung der Linearisierung kann nur mit einem Feldbus-Host geändert werden (Abbildung 4-19).

Inbetriebnahme

Konfiguration

Abbildung 4-19 Linearisierung – Feldbus-Host

Linearization Type – Auf den gewünschten Linearisierungswert einstellen.

4.9 Ändern der Ausgangsskalierung

Die AI Function Blocks können konfiguriert werden, deren Ausgang zu skalieren. Die Ausgangsskalierung wird festgelegt durch die Definition des Prozessvariablenwertes bei 0 % und bei 100 % der Skalierung. Der Ausgang des AI Blocks wird umgewandelt auf einen Wert zwischen diesen beiden Grenzen.

Anmerkung: Obwohl der Parameter Output Scale: Units Index auf einen anderen Wert eingestellt werden kann als der Parameter Transducer Scale: Unit Index, hat dieses keinen Einfluss auf den Ausgang. Der Parameter Output Scale: Units Index dient hauptsächlich zur Feldbezeichnung.

Die Ausgangsskalierung ist eine Funktion des AI Blocks und wird nur verwendet wenn die Linearisierung auf *Indirect* gesetzt ist (siehe Abschnitt 4.8). Wenn Sie die Ausgangsskalierung verwenden möchten, beachten Sie, dass dies keinen Einfluss auf die Prozesswerte im MEASUREMENT Transducer Block hat. Die resultiert im nachfolgenden Verhalten:

- ProLink II und das Bedieninterface verwenden die Prozesswerte vom MEASUREMENT Transducer Block. Deshalb kann der Ausgang eines skalierten AI Blocks vom ausgegebenen Wert eines anderen Kommunikationsmittels abweichen.
- Schwallströmung und Durchflussabschaltungen sind im MEASUREMENT Block konfiguriert. Deshalb hat die Ausgangsskalierung keinen Einfluss auf das Verhalten der Auswerteelektronik hinsichtlich Schwallströmung oder Durchflussabschaltungen.

Beispiel

Um eine Spezialeinheit für Pints pro Sekunde zu erstellen, kann der Al Block, der dem Kanal 4 (Volumen) zugeordnet ist, folgendermaßen konfiguriert werden:

- Transducer Scale: Units Index = gal/s
- Transducer Scale: EU at 0 % = 0
- Transducer Scale: EU at 100 % = 100
- Output Scale: Units Index = pints
- Output Scale: EU at 0 % = 0
- Output Scale: EU at 100 % = 800
- Linearization Type = Indirect

AI:Aus	Volumendurchfluss: Wert	Display
16 Pints/s	2 gal/s	2 gal/s

Die Ausgangsskalierung kann nur mit einem Feldbus-Host geändert werden (Abbildung 4-20).

Abbildung 4-20 Ausgangsskalierung – Feldbus-Host

4.10 Ändern der Prozessalarme

Die Auswerteelektronik sendet *Prozessalarme*, um anzuzeigen, dass ein Prozesswert die vom Anwender definierten Grenzen überschritten hat. Die Auswerteelektronik hält vier Alarmwerte für jede Prozessvariable bereit. Jeder Alarmwert hat eine ihm zugehörige Priorität. Zusätzlich verfügt die Auswerteelektronik über eine Hysteresefunktion, um sprunghafte Alarmmeldungen zu verhindern.

Anmerkung: Prozessalarme werden nur über den AI Function Block gesendet und werden NICHT auf dem Bedieninterface oder in ProLink II angezeigt.

4.10.1 Alarmwerte

Die *Prozess-Alarmwerte* stellen die Grenzen der Prozessvariablen dar. Wann immer eine Prozessvariable den Prozess-Alarmwert überschreitet, sendet die Auswerteelektronik einen Alarm an das Feldbus-Netzwerk.

Jeder AI Function Block verfügt über vier Prozess-Alarmwerte: high Alarm, high-high Alarm, low Alarm und low-low Alarm. Siehe Abbildung 4-21.

Abbildung 4-21 Alarmwerte

Die Alarmwerte können nur mit einem Feldbus-Host geändert werden (Abbildung 4-22).

Abbildung 4-22 Alarmwerte – Feldbus-Host

4.10.2 Alarmprioritäten

Jedem Prozessalarm ist eine Alarmpriorität zugeordnet. Eine *Prozess-Alarmpriorität* ist eine Zahl vom 0 bis 15. Eine höhere Zahl zeigt eine höhere Alarmpriorität an. Diese Werte dienen dem Feldbus-Netzwerkmanagement und haben keine Auswirkung auf den Betrieb der Auswerteelektronik.

Die Werte der Prozess-Alarmpriorität können nur mit einem Feldbus-Host geändert werden (Abbildung 4-23).

Abbildung 4-23 Alarmprioritäten – Feldbus-Host

4.10.3 Alarmhysterese

Der Wert der *Alarmhysterese* wird in Prozent von der Ausgangsskalierung angegeben. Nachdem ein Prozessalarm gesetzt wurde, setzt die Auswerteelektronik erst dann wieder neue Alarme, wenn der Prozess innerhalb des Prozentbereichs der Alarmhysterese zurückgekehrt ist. Abbildung 4-24 zeigt das Alarmverhalten der Auswerteelektronik bei einem Wert der Alarmhysterese von 50 %.

Beachten Sie bei der Hysterese folgendes:

- Bei einem niedrigen Hysteresewert kann die Auswerteelektronik immer oder fast immer einen neuen Alarm übermitteln, wenn die Prozessvariable den Alarmgrenzwert überschreitet.
- Ein hoher Hysteresewert verhindert das Senden neuer Alarme durch die Auswerteelektronik, bis die Prozessvariable wieder auf einen Wert, der weit genug unter dem oberen Alarmgrenzwert oder über dem unteren Alarmgrenzwert liegt, zurückgekehrt ist.

Abbildung 4-24 High-Low-Werte der Alarmhysterese

Der Alarm-Hysteresewert kann nur mit einem Feldbus-Host geändert werden (Abbildung 4-25).

Abbildung 4-25 Alarmhysterese – Feldbus-Host

4.11 Konfigurieren der Status-Alarmstufe

Status-Alarmstufen haben keine Auswirkung auf das Feldbus-Alarmsystem (siehe Abbildung 4.10). Die Hauptfunktion der Status-Alarmstufen bei der Auswerteelektronik Modell 2700 mit FOUNDATION Fieldbus ist das Steuern des Verhaltens des Bedieninterface. Siehe Abschnitt 5.4 bezüglich Informationen darüber, wie das Bedieninterface die Alarmstufen anzeigt.

Die Alarmstufe einiger Alarme kann neu klassifiziert werden. Zum Beispiel:

- Die voreingestellte Alarmstufe für Alarm A020 (Kalibrierfaktoren nicht eingegeben) ist **Fault**, diese kann entweder auf **Informational** oder **Ignore** neu konfiguriert werden.
- Die voreingestellte Alarmstufe für Alarm A102 (Antrieb Bereichsüberschreitung) ist **Informational**, diese kann entweder auf **Ignore** oder **Fault** neu konfiguriert werden.

Eine Liste aller Statusalarme und voreingestellten Alarmstufen finden Sie in Tabelle 4-12. (Weitere Informationen über Statusalarme, mögliche Ursachen und Hinweise zur Fehlersuche finden Sie in Abschnitt 6.9.)

Alarmcode	Beschreibung	Alarmstufe	Konfigurierbar
A001	(E)EPROM-Prüfsummenfehler (CP)	Fault	Nein
A002	RAM-Fault (CP)	Fault	Nein
A003	Sensorfehler	Fault	Ja
A004	Temperatursensorfehler	Fault	Nein
A005	Eingang Bereichsüberschreitung	Fault	Ja
A006	Nicht konfiguriert	Fault	Ja
A008	Dichte Bereichsüberschreitung	Fault	Ja
A009	Auswerteelektronik Initialisierung/Aufwärmphase	Ignore	Ja
A010	Kalibrierfehler	Fault	Nein
A011	Kal. Fault – zu niedrig	Fault	Ja
A012	Kal. Fault – zu hoch	Fault	Ja
A013	Kal. Fault – Rauschen zu hoch	Fault	Ja
A014	Auswerteelektronik Fault	Fault	Nein
A016	Pt100 in Rohrleitung – Temperatur Bereichsüberschreitung	Fault	Ja

Tabelle 4-12 Statusalarme und Alarmstufen

Alarmcode	Beschreibung	Voreingestellte Alarmstufe	Konfigurierbar
A017	Pt100 in Messgerät – Temperatur Bereichsüberschreitung	Fault	Ja
A018	(E)EPROM-Prüfsummenfehler	Fault	Nein
A019	RAM- oder ROM-Test Fault	Fault	Nein
A020	Kalibrierfaktoren nicht eingegeben	Fault	Ja
A021	Falscher Sensortyp (K1)	Fault	Nein
A025	Geschützter Bootsektor-Fault (CP)	Fault	Nein
A026	Sensor/Auswerteelektronik Kommunikationsfehler	Fault	Nein
A028	Core-Prozessor-Schreibfehler	Fault	Nein
A031	Spannung zu niedrig	Fault	Nein
A032	Smart-Systemverifizierung läuft und Ausgänge fixiert	Fault ⁽¹⁾	Nein
A033	Sensor OK / Messrohre vom Prozess gestoppt	Fault	Ja
A034	Intelligente Systemverifizierung fehlgeschlagen	Informational	Ja
A102	Antrieb Bereichsüberschreitung/Messrohr teilweise gefüllt	Informational	Ja
A103	Möglicher Datenverlust (Summen- und Gesamtzähler)	Informational	Ja
A104	Kalibrierung läuft	Informational ⁽²⁾	Ja
A105	Schwallströmung	Informational	Ja
A106	AI/AO Simulation aktiv	Informational	Nein
A107	Spannungsunterbrechung eingetreten	Informational	Ja
A116	API: Temperatur außerhalb des Standardbereichs	Informational	Ja
A117	API: Dichte außerhalb des Standardbereichs	Informational	Ja
A120	CM: Kurvendaten passen nicht	Informational	Nein
A121	CM: Extrapolationsalarm	Informational	Ja
A128	Werkskonfigurationsdaten ungültig	Informational	Ja
A129	Werkskonfigurationsdaten – Prüfsumme ungültig	Fault	Nein
A131	Intelligente Systemverifizierung läuft	Informational	Ja
A132	Simulationsmodus aktiviert	Informational	Ja

Tabelle 4-12 Statusalarme und Alarmstufen (Fortsetzung)

(1) Die Alarmstufe ändert sich automatisch je nach konfiguriertem Ausgangsstatus eines Smart-Systemverifizierungtests. Wenn der Ausgangsstatus auf Last Measured Value (LMV, zuletzt gemessener Wert) gesetzt ist, wird die Alarmstufe Informational sein. Wenn der Ausgangsstatus auf Fault gesetzt ist, wird die Alarmstufe Fault sein.

(2) Kann entweder auf Informational oder Ignore gesetzt werden, nicht aber auf Fault.

Sie können die Alarmstufe mittels Feldbus-Host (Abbildung 4-26) oder ProLink II (Abbildung 4-27) konfigurieren. Einige konfigurierbare Alarme können entweder auf Informational oder Ignore, nicht aber auf Fault gesetzt werden.

Abbildung 4-26 Alarmstufe – Feldbus-Host

Abbildung 4-27 Alarmstufe – ProLink II

4.12 Ändern der Dämpfungswerte

Der Dämpfungswert ist ein Zeitabschnitt in Sekunden, während dem der Wert der Prozessvariablen geändert wird, um 63 % der tatsächlichen Prozessänderung wiederzuspiegeln. Mit der Dämpfung kann die Auswerteelektronik geringe, plötzlich auftretende Messwertschwankungen glätten.

- Ein hoher Dämpfungswert führt zu einem glatteren Ausgangssignal sowie zu langsameren Signaländerungen.
- Ein niedriger Dämpfungswert führt zu einem sprunghafteren Ausgangssignal sowie zu schnelleren Signaländerungen.

Die Dämpfung kann für Durchfluss, Dichte und Temperatur mittels Feldbus-Host (Abbildung 4-28) oder ProLink II (Abbildung 4-29) konfiguriert werden.

Anmerkung: In jedem AI Block befindet sich auch der Dämpfungsparameter Process Value Filter Time. Um zu verhindern, dass Sie zwei Dämpfungswerte verwenden (potenzieller Konflikt), sollten Sie die Dämpfungswerte nur im MEASUREMENT Transducer Block setzen. Der Parameter Process Value Filter Time für jeden AI Block sollte auf 0 gesetzt sein.

Г

Wenn Sie einen neuen Dämpfungswert spezifizieren, wird dieser automatisch auf den nächsten gültigen Dämpfungswert abgerundet. Die gültigen Dämpfungswerte sind in Tabelle 4-13 aufgeführt.

Anmerkung: Bei Gas-Anwendungen empfiehlt Micro Motion einen min. Dämpfungswert für den Durchfluss von 2.56.

Vor dem Einstellen der Dämpfungswerte sehen Sie in Abschnitt 4.12.1 nach hinsichtlich Informationen, wie sich die Dämpfungswerte auf andere Messungen der Auswerteelektronik auswirken.

Prozessvariable	Gültige Dämpfungswerte
Durchfluss (Masse und Volumen)	0, 0,04, 0,08, 0,16, 40,96
Dichte	0, 0,04, 0,08, 0,16, 40,96
Temperatur	0, 0,6, 1,2, 2,4, 4,8, 76,8

Tabelle 4-13 Gültige Dämpfungswerte

Abbildung 4-28 Dämpfung – Feldbus-Host

٦.

MEASUREMENT		Flow Damping Density Damping Temperature Damping
Flow Damping	-	Auf den gewünschten Dämpfungswert für Massen- und Volumendurchflussmessung einstellen.
Density Damping	_	Auf den gewünschten Dämpfungswert für die Dichtemessung einstellen.
Temperature Damping	_	Auf den gewünschten Dämpfungswert für die Temperaturmessung einstellen.

Abbildung 4-29 Dämpfung – ProLink II

4.12.1 Dämpfung und Volumenmessung

Bei der Konfiguration der Dämpfungswerte sollten Sie folgendes beachten:

- Der Volumendurchfluss für Flüssigkeiten wird von der Masse- und Dichtemessung abgeleitet, deshalb beeinflusst jede Dämpfung des Massendurchflusses und der Dichte auch die Volumenmessung von Flüssigkeiten.
- Der Gas-Standardvolumendurchfluss wird von der Massendurchflussmessung abgeleitet, aber nicht von der Dichtemessung. Deshalb beeinflusst nur die Dämpfung des Massendurchflusses die Gas-Standardvolumenmessung.

Stellen Sie die Dämpfungswerte dementsprechend ein.

4.13 Ändern der Schwallstromgrenzen und -dauer

Schwallströme – Gas in einem Flüssigkeitsprozess oder Flüssigkeit in einem Gasprozess – treten gelegentlich bei einigen Anwendungen auf. Das Auftreten von Schwallströmen kann die Messung der Prozessdichte erheblich beeinflussen. Mit den Parametern der Schwallströmung kann die Auswerteelektronik starke Schwankungen der Prozessvariablen unterdrücken und Prozesszustände erkennen, die eine Korrektur erfordern.

Schwallstrom Parameter sind:

- Unterer Schwallstrom-Grenzwert unterhalb dieses Punktes liegt Schwallströmung vor. Normalerweise ist dies die niedrigste zu erwartende Dichte Ihres Prozesses. Der voreingestellte Wert ist 0,0 g/cm³. Der gültige Bereich ist 0,0–10,0 g/cm³.
- *Oberer Schwallstrom-Grenzwert* oberhalb dieses Punktes liegt Schwallströmung vor. Normalerweise ist dies die höchste zu erwartende Dichte Ihres Prozesses. Der voreingestellte Wert ist 5,0 g/cm³. Der gültige Bereich ist 0,0–10,0 g/cm³.
- Schwallstromdauer ist die Zeit in Sekunden, die die Auswerteelektronik auf eine Schwallstrombedingung wartet, bevor sie diese löscht. Wenn die Auswerteelektronik eine Schwallströmung erkennt, setzt sie einen Schwallstromalarm und hält den zuletzt vor der Schwallströmung gemessenen Durchflusswert bis zum Ende der Schwallstromdauer. Ist eine Schwallströmung nach der Schwallstromdauer immer noch vorhanden, gibt die Auswerteelektronik für den Durchfluss Null aus. Der voreingestellte Wert für die Schwallstromdauer ist 0,0 s. Der gültige Bereich ist 0,0 bis–60,0 s.

Anmerkung: Anheben des unteren Schwallstrom-Grenzwertes oder Herabsetzen des oberen Schwallstrom-Grenzwertes erhöht die Möglichkeit, dass die Auswerteelektronik Schwallstromzustände erkennt.

Anmerkung: Die Schwallstrom-Grenzwerte müssen in g/cm³ eingegeben werden, auch wenn für die Dichte eine andere Einheit konfiguriert wurde. Die Schwallstromdauer muss in Sekunden eingegeben werden.

Sie können Schwallstrom mittels Feldbus-Host (Abbildung 4-30) oder ProLink II (Abbildung 4-31) konfigurieren.

Abbildung 4-30 Schwallstrom-Einstellungen – Feldbus-Host

- Slug Low Limit Auf die Dichte einstellen, unterhalb der die Schwallstrom-Bedingung gegeben ist.
- Slug High Limit Auf die Dichte einstellen, oberhalb der die Schwallstrom Bedingung gegeben ist.
- Slug Duration Auf die Anzahl der Sekunden setzen, die abzuwarten sind, bevor eine Schwallstrom-Bedingung gelöscht wird, ehe ein Schwallstromalarm gesetzt wird.

Abbildung 4-31 Schwallstrom-Einstellungen – ProLink II

4.14 Konfigurieren von Abschaltungen

Abschaltungen sind benutzerdefinierte Werte, unterhalb derer die Auswerteelektronik für die spezifizierte Prozessvariable den Wert Null ausgibt. Abschaltungen können für Massendurchfluss, Volumendurchfluss, Gas-Standardvolumendurchfluss und Dichte eingerichtet werden.

In Tabelle 4-14 finden Sie die voreingestellten Werte und entsprechende Bemerkungen zu jeder Abschaltung. Informationen zu Wechselwirkungen der Abschaltungen mit anderen Messungen der Auswerteelektronik finden Sie in Abschnitt Abschnitt 4.14.1.

Abschaltung	Voreingestellte r Wert	Bemerkungen
Masse	0,0 g/s	Micro Motion empfiehlt einen Massendurchfluss-Abschaltwert von 0,2 % vom max. Sensordurchfluss für den Standardbetrieb und 2,5 % vom max. Sensordurchfluss für "empty-full-empty" Batchvorgänge.
Flüssigkeitsvo- lumen	0,0 l/s	Der untere Grenzwert der Volumendurchfluss-Abschaltung ist 0. Der obere Grenzwert der Volumendurchfluss-Abschaltung ist der Sensor-Durchflusskalibrierfaktor in I/s, multipliziert mit 0,2.
Gas-Standardvo lumendurchfluss	0,0 SCFM	Kein Grenzwert
Dichte	0,2 g/cm ³	Der Bereich der Dichteabschaltung ist 0,0–0,5 g/cm ³

 Tabelle 4-14
 Abschaltungen, voreingestellte Werte und Bemerkungen

Sie können die Abschaltungen mittels Feldbus-Host (Abbildung 4-32) oder ProLink II (Abbildung 4-33) konfigurieren.

Abbildung 4-32 Abschaltungen – Feldbus-Host

Abbildung 4-33 Abschaltungen – ProLink II

(1) Wenn der Volumendurchfluss für Gas-Standardvolumen konfiguriert ist, wird dieses Feld mit Std Gas Vol Flow Cutoff bezeichnet.

4.14.1 Abschaltungen und Volumendurchfluss

Wenn Flüssigkeits-Volumendurchfluss aktiviert ist:

- Die Dichte-Abschaltung wirkt sich auf die Berechnung des Volumendurchflusses aus. Fällt die Dichte unter den konfigurierten Abschaltwert, geht der Volumendurchfluss auf Null.
- Die Massendurchfluss-Abschaltung wirkt sich nicht auf die Berechnung des Volumendurchflusses aus. Selbst wenn der Massendurchfluss unter den Abschaltwert fällt und so die Anzeigen des Massendurchflusses auf Null gehen, wird der Volumendurchfluss weiterhin anhand der aktuellen Massendurchfluss-Prozessvariable berechnet.

Konfiguration

Wenn Gas-Standardvolumendurchfluss aktiviert ist, wirken sich weder die Massendurchfluss-Abschaltung noch die Dichte-Abschaltung auf die Berechnung des Volumendurchflusses aus.

4.15 Ändern des Parameters Flow Direction

Der Parameter *flow direction*steuert, wie die Auswerteelektronik den Durchfluss übermittelt und wie der Durchfluss vom Summenzähler addiert oder subtrahiert wird.

- Forward (positive) flow strömt in die Richtung des Pfeils auf dem Sensor.
- Reverse (negative) flow strömt in die entgegengesetzte Richtung des Pfeils auf dem Sensor.

Optionen der Durchflussrichtung:

- Vorwärtsdurchfluss
- Rückwärtsdurchfluss
- Bi-direktional
- Absolutwert
- Negieren/nur Vorwärts
- Negieren/Bi-direktional

Die Auswirkung jeder dieser Optionen ist in Tabelle 4-15 dargestellt.

Tabelle 4-15 Verhalten der Auswerteelektronik f f ir jeden Wert der Durchflussrichtung

	Vorwärtsdurchfluss		Rückwärtsdurchfluss	
Wert der Durchflussrich- tung	Durchfluss- zähler	Durchflusswerte auf der Anzeige oder digitalen Kommunika- tion	Durchfluss- zähler	Durchflusswerte auf der Anzeige oder digitalen Kommunika- tion
Nur Vorwärts	Zunehmend	Positiv	Keine Änderung	Negativ
Nur Rückwärts	Keine Änderung	Positiv	Zunehmend	Negativ
Bi-direktional	Zunehmend	Positiv	Abnehmend	Negativ
Absolutwert	Zunehmend	Positiv ⁽¹⁾	Zunehmend	Positiv ⁽¹⁾
Negieren/nur Vorwärts	Keine Änderung	Negativ	Zunehmend	Positiv
Negieren/Bi-direktional	Abnehmend	Negativ	Zunehmend	Positiv

(1) Siehe Statusbits der digitalen Kommunikation als Indikation, ob der Durchfluss positiv oder negativ ist.

Sie können den Parameter Flow Direction mittels Feldbus-Host (Abbildung 4-34) oder ProLink II (Abbildung 4-35) ändern.

Abbildung 4-34 Parameter Flow Direction – Feldbus-Host

Flow Direction – Auf den gewünschten Wert einstellen (siehe Durchflussrichtungswert in Tabelle 4-15).

Abbildung 4-35 Parameter Flow Direction – ProLink II

4.16 Ändern der Geräteeinstellungen

Die Geräteeinstellungen werden verwendet, um die Komponenten des Durchflussmessers zu beschreiben. Die folgenden Informationen können eingegeben werden:

- Kennzeichnung
- Meldung
- Datum

Diese Parameter dienen dem Anwenderkomfort und dem Netzwerk-Management. Sie werden nicht für die Verarbeitung in der Auswerteelektronik benötigt und sind auch nicht erforderlich.

Sie können die Kennzeichnung mit einem Feldbus-Host mittels der Kennzeichnungsfunktion des Hosts einrichten. Sie können die Kennzeichnung, die Meldung und das Datum mittels ProLink II (Abbildung 4-36) einrichten.

🛕 ACHTUNG

Durch Einrichten der Software-Kennzeichnung mittels ProLink II wird die Auswerteelektronik neu gestartet.

Abbildung 4-36 Geräteeinstellungen – ProLink II

Bei ProLink II verwenden Sie den linken und rechten Pfeil oben im Kalender, um das Jahr und den Monat auszuwählen und klicken dann auf ein Datum.

4.17 Konfigurieren der Sensorparameter

Die Sensorparameter werden zur Beschreibung der Sensorkomponenten Ihres Durchflussmessers verwendet. Diese Sensorparameter werden nicht für die Verarbeitung in der Auswerteelektronik benötigt und sind auch nicht erforderlich:

- Seriennummer
- Sensorwerkstoff
- Auskleidungswerkstoff
- Flansche

Sie können die Sensorparameter mittels Feldbus-Host (Abbildung 4-37) oder ProLink II (Abbildung 4-38) konfigurieren.

Abbildung 4-37 Sensorparameter – Feldbus-Host

Einführung

Abbildung 4-38 Sensorparameter – ProLink II

4.18 Ändern der Bedieninterface-Funktionen

Sie können die Funktionalität des Bedieninterface einschränken oder die anzuzeigenden Variablen ändern.

4.18.1 Aktivieren und Deaktivieren der Bedieninterface-Funktionen

Bedieninterface-Funktionen finden Sie in Tabelle 4-16.

Tabelle 4-16	Bedieninterface-Funktionen und Parameter
--------------	--

Bedieninterface- Funktion	Feldbus- Parameter	Display-Code	Aktiviert	Deaktiviert
Zähler zurücksetzen ⁽¹⁾	Totalizer reset	TOTAL RESET	Massen- und Volumenzähler sind rücksetzbar.	Massen- und Volumenzähler sind nicht rücksetzbar.
Zähler Start/Stopp	Totalizer start/stop	TOTAL STOP	Anwender kann Zähler vom Bedieninterface aus starten und stoppen.	Anwender kann Zähler nicht starten oder stoppen.
Automatischer Bildlauf ⁽²⁾	Auto scroll	AUTO SCRLL	Display durchläuft automatisch alle Prozessvariablen.	Anwender muss Scroll verwenden, um die Prozessvariablen anzusehen.
Offline-Menü	Offline menu	DISPLAY OFFLN	Der Anwender kann auf das Offline-Menü zugreifen.	Kein Zugriff auf das Offline-Menü.
Alarm-Menü	Alarm menu	DISPLAY ALARM	Der Anwender kann auf das Alarm-Menü zugreifen.	Kein Zugriff auf das Alarm-Menü.
Alle Alarme bestätigen	ACK all alarms	DISPLAY ACK	Der Anwender kann alle aktuellen Alarme zusammen bestätigen.	Jeder Alarm muss individuell bestätigt werden.

Bedieninterface- Funktion	Feldbus- Parameter	Display-Code	Aktiviert	Deaktiviert
Offline-Passwort ⁽³⁾	Offline password	CODE OFFLN	Passwort für Offline-Menü erforderlich. Siehe Abschnitt 4.18.4.	Zugriff auf Offline-Menü ohne Passwort möglich.
Display-Hintergrund beleuchtung	Display backlight	DISPLAY BKLT	Display-Hintergrundbeleuc htung ist EIN.	Display-Hintergrundbeleuc htung ist AUS.
Status-LED blinkt	Status LED blinking	Kein Zugriff über das Bedieninterface	Status-LED blinkt, wenn unbestätigte Alarme aktiv sind.	Status LED blinkt nicht.
Alarm-Passwort ⁽³⁾	Alarm password	CODE ALARM	Passwort für Alarm-Menü erforderlich.	Zugriff auf Alarm-Menü ohne Passwort möglich.

Tabelle 4-16 Bedieninterface-Funktionen und Parameter (Fortsetzung)

(1) Wenn die Anwendung Mineralölmessung auf Ihrer Auswerteelektronik installiert ist, muss immer das Display-Passwort eingegeben werden, um die Zähler zu starten, stoppen oder zurückzusetzen, auch wenn kein Passwort aktiviert ist. Wenn die Anwendung Mineralölmessung nicht installiert ist, ist das Display-Passwort für diese Funktionen nicht erforderlich, auch wenn eines der Display-Passwörter aktiviert ist.

(2) Wenn aktiviert, sollten Sie die Bildlaufrate konfigurieren. Siehe Abschnitt 4.18.2.

(3) Wenn aktiviert, muss auch das Display-Passwort konfiguriert sein. Siehe Abschnitt 4.18.4.

Folgendes ist zu beachten:

- Verwenden Sie das Bedieninterface, um den Zugriff auf das Offline-Menü zu deaktivieren. Das Offline-Menü wird ausgeblendet, sobald Sie das Menü-System verlassen. Wenn Sie den Zugriff wieder aktivieren möchten, müssen Sie eine andere Methode verwenden (z.B. ProLink II).
- Wenn Sie das Bedieninterface zur Konfiguration des Bedieninterface verwenden:
 - Müssen Sie zuerst Auto Scroll konfigurieren, bevor Sie die Scroll Rate konfigurieren.
 - Sie müssen zuerst das Offline-Passwort aktivieren, bevor Sie das Passwort konfigurieren können.

Sie können die Parameter des Bedieninterface mittels Feldbus-Host (Abbildung 4-39), ProLink II (Abbildung 4-40) oder dem Bedieninterface (Abbildung 4-41) aktivieren und deaktivieren.

Abbildung 4-39 Bedieninterface-Funktionen – Feldbus-Host

Siehe Feldbus-Parameter in Tabelle 4-16. Jeder Parameter kann auf *Enabled* oder *Disabled* gesetzt werden.

Abbildung 4-40 Bedieninterface-Funktionen – ProLink II

Abbildung 4-41 Bedieninterface-Funktionen – Bedieninterface

(1) Wenn Sie den Zugriff auf das Offline Menü deaktivieren, wird das Offline-Menü ausgeblendet, sobald Sie den Bildschirm verlassen. Um den Zugriff wieder zu aktivieren, müssen Sie einen Feldbus-Host oder ProLink II verwenden.

(2) Wenn Auto Scroll aktiviert ist, erscheint eine Scroll Rate Anzeige unmittelbar nach dem Auto Scroll Bildschirm.

(3) Wenn ein Passwort aktiviert ist, erscheint eine Change Code Anzeige, so dass das Passwort konfiguriert werden kann.

4.18.2 Ändern der Bildlaufrate

Die *Scroll Rate* steuert die Bildlauf-Geschwindigkeit bei aktiviertem Auto Scroll. Die Scroll Rate definiert, wie lange jede Displayvariable auf dem Bedieninterface angezeigt wird. Die Zeitperiode wird in Sekunden angegeben (z. B. wenn die Scroll Rate auf 10 eingestellt ist, wird jede Displayvariable für 10 Sekunden auf dem Bedieninterface angezeigt). Der gültige Bereich ist 0 bis 10 s.

Sie können die Scroll Rate mittels Feldbus-Host (Abbildung 4-42) oder ProLink II (Abbildung 4-43) ändern.

Abbildung 4-42 Scroll Rate – Feldbus-Host

Display Scroll Rate – Auf die Anzahl der Sekunden einstellen, die jede Variable angezeigt werden soll.

Abbildung 4-43 Scroll Rate – ProLink II

4.18.3 Ändern der Aktualisierungsperiode

Der Parameter Update Period (oder Display Rate) steuert, wie oft das Display mit den aktuellen Daten aktualisiert wird. Voreingestellt ist 200 ms. Der Bereich liegt zwischen 100 und 10 000 ms. Der Wert der Update Period betrifft alle angezeigten Prozessvariablen.

Sie können die Update Period mittels Feldbus-Host (Abbildung 4-44), ProLink II (Abbildung 4-45) oder dem Bedieninterface (Abbildung 4-46) ändern.

Abbildung 4-44 Update Period – Feldbus-Host

Update Rate – Auf die Anzahl ms zwischen den Aktualisierungen des Displays einstellen (100 bis 10 000, voreingestellt ist 200).

Abbildung 4-45 Update Period – ProLink II

Abbildung 4-46 Update Period – Display

4.18.4 Ändern des Display-Passworts

Das Display-Passwort ist ein numerischer Code, der bis zu vier Ziffern enthalten kann. Er wird für das Passwort des Offline-Menüs und des Alarm-Menüs verwendet. Siehe Abschnitt G.4.4 bezüglich Informationen über die Implementierung der beiden Passwörter.

Wenn Sie das Bedieninterface verwenden, müssen Sie entweder das Offline-Passwort oder das Alarm-Passwort aktivieren, bevor Sie das Passwort konfigurieren können (siehe Abschnitt 4.18.1).

Anmerkung: Wenn die Anwendung Mineralölmessung auf Ihrer Auswerteelektronik installiert ist, muss immer das Display-Passwort eingegeben werden, um die Zähler zu starten, stoppen oder zurückzusetzen, auch wenn kein Passwort aktiviert ist. Wenn die Anwendung Mineralölmessung nicht installiert ist, ist das Display-Passwort für diese Funktionen nicht erforderlich, auch wenn eines der Passwörter aktiviert ist.

Sie können das Passwort mittels Feldbus-Host (Abbildung 4-47), ProLink II (Abbildung 4-48) oder dem Bedieninterface (Abbildung 4-49) ändern.

Abbildung 4-47 Display-Passwort – Feldbus-Host

Display Offline Password – Geben Sie ein 4-stelliges Passwort zwischen 0000 und 9999 ein.

Abbildung 4-48 Display-Passwort – ProLink II

Abbildung 4-49 Display-Passwort – Bedieninterface

4.18.5 Ändern der Displayvariablen und Anzeigegenauigkeit

Sie können mit dem Bedieninterface bis zu 15 Prozessvariablen in beliebiger Reihenfolge durchlaufen. Sie können die Prozessvariablen wählen, die Sie ansehen möchten und die Reihenfolge festlegen, in der sie erscheinen sollen.

Zusätzlich können Sie für jede Displayvariable die Anzeigegenauigkeit konfigurieren. Die Anzeigegenauigkeit legt die Anzahl der Stellen rechts vom Dezimalkomma fest. Der Bereich der Anzeigegenauigkeit ist 0 bis 5.

Anmerkung: Wenn Sie die Volumendurchflussart von Flüssigkeitsvolumen auf Gas-Standardvolumen ändern (siehe Abschnitt 4.3), werden alle für den Volumendurchfluss konfigurierten Displayvariablen automatisch auf GSV-Durchfluss geändert. Wenn Sie dementsprechend die Volumendurchflussart von Gas-Standardvolumen auf Flüssigkeitsvolumen ändern, werden alle für GSV-Durchfluss konfigurierten Displayvariablen automatisch auf Volumendurchfluss geändert.

Tabelle 4-17 zeigt ein Beispiel einer Konfiguration der Displayvariablen. Beachten Sie, dass Sie Variablen wiederholen können und ebenso "None" wählen können. Das aktuelle Erscheinen jeder Prozessvariablen auf dem Display ist beschrieben in Anhang G.

Displayvariable	Prozessvariable
Displayvariable 1	Mass flow
Displayvariable 2	Volume flow
Displayvariable 3	Density
Displayvariable 4	Mass flow
Displayvariable 5	Volume flow
Displayvariable 6	Mass totalizer
Displayvariable 7	Mass flow
Displayvariable 8	Temperature
Displayvariable 9	Volume flow
Displayvariable 10	Volume totalizer
Displayvariable 11	Density
Displayvariable 12	Temperature
Displayvariable 13	None
Displayvariable 14	None
Displayvariable 15	None

Tabelle 4-17 Beispiel einer Konfiguration der Displayvariablen

Sie können die Displayvariablen und die Anzeigengenauigkeit mittels Feldbus-Host (Abbildung 4-50) oder ProLink II (Abbildung 4-51) ändern.

Abbildung 4-50 Displayvariablen – Feldbus-Host

Abbildung 4-51 Displayvariablen – ProLink II

4.18.6 Ändern der Bedieninterface-Sprache

Daten und Menüs können in einer der folgenden Sprachen auf dem Bedieninterfaceine angezeigt werden:

- Englisch
- Französisch
- Deutsch
- Spanisch

Sie können die Bedieninterface-Sprache mittels Feldbus-Host (Abbildung 4-52), ProLink II (Abbildung 4-53) oder über das Bedieninterface selber (Abbildung 4-54) konfigurieren.
Konfiguration

Abbildung 4-52 Bedieninterface-Sprache – Feldbus-Host

Language – Die gewünschte Bedieninterface-Sprache festlegen.

Abbildung 4-53 Bedieninterface-Sprache – ProLink II

Abbildung 4-54 Display-Sprache – Bedieninterface

4.19 Konfigurieren des Schreibschutz-Modus

Wenn sich die Auswerteelektronik im Schreibschutz-Modus befindet, können die in der Auswerteelektronik und im Core-Prozessor gespeicherten Konfigurationsdaten erst geändert werden, wenn der Schreibschutz-Modus deaktiviert ist.

Sie können den Schreibschutz-Modus mittels Feldbus-Host (Abbildung 4-55), ProLink II (Abbildung 4-56) oder über das Bedieninterface (Abbildung 4-56) konfigurieren.

Konfiguration

Abbildung 4-55 Schreibschutz-Modus – Feldbus-Host

Write Lock – Auf *Locked* setzen, um den Schreibschutz für die Auswerteelektronik zu aktivieren. Auf *Not Locked* setzen, um die Konfiguration zu ermöglichen.

Abbildung 4-56 Schreibschutz-Modus – ProLink II

Abbildung 4-57 Schreibschutz-Modus – Bedieninterface

Konfiguration

4.20 Aktivieren der LD-Optimierung

LD Optimization (Angleichung an große Durchmesser) ist eine besondere Kompensation speziell für flüssige Kohlenwasserstoffe. LD Optimization darf nicht für andere Verfahrensflüssigkeiten verwendet werden. LD Optimization ist nur mit bestimmten großen Fühlergrößen verfügbar. Wenn die LD Optimization für den Sensor vorteilhaft ist, erscheint die Option "Enable/Disable" in ProLink II oder auf dem Bedieninterface.

ACHTUNG

Wenn Sie den Sender zwecks Wasserkalibrierung an eine Kalibriereinrichtung schicken, muss die LD Optimization deaktiviert werden, sei es während der Inbetriebnahme oder danach. Wenn die Kalibrierung abgeschlossen ist, können Sie die LD Optimization wieder aktivieren.

Um die LD-Optimierung zu aktivieren, siehe Abb. 4-58 und 4-59.

Abbildung 4-58 LD-Optimierung – ProLink II

Abbildung 4-59 LD-Optimierung – Bedieninterface

ņ

Kapitel 5 Betrieb

5.1 Übersicht

Dieses Kapitel beschreibt den normalen Betrieb der Auswerteelektronik. Die Vorgehensweisen in diesem Kapitel ermöglichen Ihnen die Verwendung eines Feldbus-Hostsystems, des Bedieninterface sowie ProLink II um:

- Die Prozessvariablen anzuzeigen (Abschnitt 5.2)
- Den Simulationsmodus zu verwenden (Abschnitt 5.3)
- Auf Alarmmeldungen zu reagieren (Abschnitt 5.4)
- Summenzähler und Gesamtzähler zu verwenden (Abschnitt 5.5)

Anmerkung: Alle Vorgehensweisen in diesem Kapitel gehen davon aus, dass Sie eine Kommunikation mit der Auswerteelektronik hergestellt haben und dass Sie alle Sicherheitsanforderungen einhalten. Siehe Anhang E und F.

5.2 Anzeigen von Prozessvariablen

Die Prozessvariablen enthalten Messgrössen wie Massendurchfluss, Volumendurchfluss, Gesamtmasse, Gesamtvolumen, Temperatur und Dichte und Antriebsverstärkung.

Sie können die Prozessvariablen mit Feldbus-Host, dem Bedieninterface oder ProLink II ansehen.

Mit Feldbus-Host

Die Auswerteelektronik verfügt über vier Feldbus AI Function Blocks. Jeder AI Function Block meldet den Wert einer Prozessvariablen, der dazugehörigen Messeinheit und einen Statuswert, der die Messqualität anzeigt. Weitere Informationen über Function Blocks finden Sie in der Betriebsanleitung für *FOUNDATION Feldbus Blocks* verfügbar auf der Rosemount Website (www.rosemount.com).

Um eine Prozessvariable anzusehen, wählen Sie den AI Function Block, der diese Variable misst und lesen den Parameter OUT. Der Ausgang des AI Blocks kann durch die Ausgangsskalierung beeinflusst sein (siehe Abschnitt 4.9).

Sie können ebenso jede Prozessvariable über den MEASUREMENT Transducer Block Parameter ansehen. In Tabelle 5-1 finden Sie die Prozessvariablen entsprechend jedem MEASUREMENT Transducer Block Parameter.

Prozessvariable	Transducer Block Parameter	
Massendurchfluss	Mass Flow: Value	
Volumendurchfluss	Volume Flow: Value	
Temperatur	Temperature: Value	
Dichte	Density: Value	
Gas-Standardvolumen ⁽¹⁾	Gas Volume Flow Rate: Value	

Tabelle 5-1 Prozessvariablen-Parameter im MEASUREMENT Transducer Block

(1) Das Gas-Standardvolumen ist nicht verfügbar, wenn die Anwendung Mineralölmessung oder Konzentrationsmessung aktiviert ist.

Mit Bedieninterface

Siehe Anhang G für detaillierte Ausführungen über die Verwendung des Bedieninterface zum Anzeigen der Prozessvariablen. Die Prozessvariablen, die am Bedieninterface angezeigt werden sollen, müssen evtl. konfiguriert werden. Siehe Abschnitt 4.18.5.

Mit ProLink II Software

Um die Prozessvariablen mit ProLink II Software anzuzeigen, wählen Sie **ProLink > Prozessvariablen**.

5.2.1 Anzeigen der API-Prozessvariablen

Sie können die Prozessvariablen der Mineralölmessung (API) mit Feldbus-Host, dem Bedieninterface oder ProLink II ansehen.

Mit Feldbus-Host

Ist ein AI Function Block so konfiguriert, dass er einen der Mineralölmessungs-Variablenkanäle (API) (siehe Abschnitt 2.3), können Sie diesen AI Block auswählen und den Out Parameter auslesen.

Sie können auch alle Mineralölmessungsvariablen (API) ansehen, indem Sie die Parameter im Mineralölmessung (API) Transducer Block durchsehen. In Tabelle 5-2 finden Sie die API-Prozessvariablen für jeden API Transducer Block Parameter.

Tabelle 5-2 Mineralölmessungs-Prozessvariablenparameter im API Transducer Block

API-Prozessvariable	API Block Parameter
Temperaturkorrigierte Dichte	API Corr Density: Value
Temperaturkorrigierter (Standard-) Volumendurchfluss	API Corr Volume Flow: Value
Batch-gewichteter Dichte-Mittelwert	API Ave Density: Value
Batch-gewichteter Temperatur-Mittelwert	API Ave Temperature: Value

Betrieb

Mit Bedieninterface

Siehe Anhang G für detaillierte Ausführungen über die Verwendung des Bedieninterface zum Anzeigen der Prozessvariablen. Die Prozessvariablen, die am Bedieninterface angezeigt werden sollen, müssen evtl. konfiguriert werden. Siehe Abschnitt 4.18.5.

Mit ProLink II Software

Um die API-Prozessvariablen mit ProLink II Software anzuzeigen, wählen Sie **ProLink > API Process Variables**.

5.2.2 Anzeigen der Konzentrationsmessungs-Prozessvariablen

Sie können die Prozessvariablen der Konzentrationsmessung (KM) mit Feldbus-Host, dem Bedieninterface oder ProLink II ansehen.

Mit Feldbus-Host

Ist ein AI Function Block so konfiguriert, dass er eine der KM-Variablen verwendet (siehe Abschnitt 2.3), können Sie diesen AI Block auswählen und den OUT Parameter auslesen.

Sie können auch alle KM-Variablen ansehen, indem Sie deren Parameter im CONCENTRATION MEASUREMENT Transducer Block durchsehen. In Tabelle 5-2 finden Sie die KM-Prozessvariablen für jeden CONCENTRATION MEASUREMENT Transducer Block Parameter.

Tabelle 5-3 KM-Prozessvariablen nach Parametern im CONCENTRATION MEASUREMENT Transducer Block

KM-Prozessvariable	CONCENTRATION MEASUREMENT Transducer Block Parameter
Dichte bei Referenzpunkt	CM Density At Ref: Value
Dichte (feste spez. Dichte-Einheiten)	CM Density SG: Value
Standard-Volumendurchfluss	CM Std Volume Flow: Value
Netto-Massendurchfluss	CM Net Mass Flow: Value
Konzentration	CM Concentration: Value

Mit Bedieninterface

Siehe Anhang G für detaillierte Ausführungen über die Verwendung des Bedieninterface zum Anzeigen der Prozessvariablen. Die Prozessvariablen, die am Bedieninterface angezeigt werden sollen, müssen evtl. konfiguriert werden. Siehe Abschnitt 4.18.5.

Mit ProLink II Software

Um die KM-Prozessvariablen mit ProLink II Software anzuzeigen, wählen Sie **ProLink > CM Process Variables**.

5.3 Simulationsmodus

Die Auswerteelektronik verfügt über zwei Simulationsmodi:

- Feldbus-Simulationsmodus
- Sensor-Simulationsmodus

Betrieb

5.3.1 Feldbus-Simulationsmodus

Die Auswerteelektronik verfügt über einen "Simulate Enable" Schalter, mit dem die Auswerteelektronik im Simulationsmodus arbeiten kann, wie in der FOUNDATION Fieldbus Function Block Spezifikation definiert. Dieser Schalter ist über die Software mit Feldbus Host (Abbildung 5-1) oder ProLink II (Abbildung 5-2) wählbar.

Simulate Mode - Auf Enabled setzen, um den Simulationsmodus zu aktivieren.

Abbildung 5-2 Feldbus-Simulationsmodus – ProLink II

5.3.2 Sensor-Simulationsmodus

Der Sensor-Simulationsmodus simuliert Werte, die die aktuellen Prozessdaten vom Sensor ersetzen. Der Sensor-Simulationsmodus kann nur mit ProLink II (Abbildung 5-3) aktiviert werden.

Abbildung 5-3 Sensor-Simulationsmodus – ProLink II

5.4 Reagieren auf Alarme

Die Auswerteelektronik gibt einen Alarm aus, sobald eine Prozessvariable ihre definierten Grenzen überschreitet oder die Auswerteelektronik eine Störbedingung entdeckt. Anweisungen zu den möglichen Alarmen finden Sie in Abschnitt 6.9.

5.4.1 Ansehen von Alarmen

Sie können die Alarme mit Feldbus-Host, dem Bedieninterface oder der ProLink II Software ansehen.

Mit Feldbus-Host

Die Auswerteelektronik setzt den Feldbus-Ausgangsstatus immer dann auf *schlecht* oder *unsicher*, wenn eine Alarmbedingung eintritt. Ein PlantWeb-Alarm kann ebenso dargestellt werden. (Siehe Anhang A bezüglich Informationen über PlantWeb-Alarme.) Wenn der Ausgangsstatus schlecht oder unsicher ist, können Sie einen Alarm mittels der folgenden Alarmparameter ansehen:

- Jeder AI Function Block enthält einen Block Error Parameter, der die Alarmbits für diesen AI Block enthält.
- Der DIAGNOSTICS Transducer Block enthält vier Parameter mit der Bezeichnung Alarm Status 1 bis Alarm Status 4. Jeder dieser Parameter hat eine kurze Alarmbit-Liste (siehe Anhang B).

Mit Bedieninterface

Das Display stellt die Alarme auf zwei Arten dar:

- Mit der Status-LED, die anzeigt, ob ein oder mehrere Alarme gesetzt wurden
- Mit dem Alarmverzeichnis, welches jeden einzelnen Alarm anzeigt

Anmerkung: Wenn der Zugriff auf das Alarmmenü über das Bedieninterface deaktiviert ist (siehe Abschnitt 4.18), werden die Alarmcodes nicht in einem Alarmverzeichnis angezeigt und die Status-LED blinkt nicht. Die Status-LED zeigt den Status grün, gelb oder rot an.

Die Status-LED befindet sich oben auf dem Bildschirm (Abbildung 5-4). Die Statusanzeige kann einen der sechs möglichen Zustände anzeigen. Informationen hierzu finden Sie in Tabelle 5-4.

Abbildung 5-4 Alarmmenü auf dem Bedieninterface

Tabelle 5-4 Prioritäten angezeigt durch die Status-LED

Status-LED	Alarmpriorität	
Grün	Kein Alarm – Normaler Betriebszustand	
Blinkt grün ⁽¹⁾	Unbestätigter behobener Zustand	
Gelb	Bestätigter Alarm niedriger Priorität	
Blinkt gelb ⁽¹⁾	Unbestätigter Alarm niedriger Priorität	
Rot	Bestätigter Alarm hoher Priorität	
Blinkt rot ⁽¹⁾	Unbestätigter Alarm hoher Priorität	

(1) Wenn die LED-Blinkoption ausgeschaltet ist (siehe Abschnitt 4.18.1), blinkt die Status-LED nur während der Kalibrierung. Sie blinkt nicht, um einen unbestätigten Alarm anzuzeigen.

Die Alarme im Alarmverzeichnis sind nach Priorität geordnet. Um einzelne Alarme aus dem Verzeichnis anzusehen, siehe Abbildung 5-5.

Betrieb

Mit ProLink II

ProLink II bietet zwei Möglichkeiten, um die Alarminformationen anzuzeigen:

- Wählen Sie ProLink > Status. Dieses Fenster zeigt den aktuellen Status aller möglichen Alarme unabhängig von der konfigurierten Alarmstufe. Die Alarme sind aufgeteilt in drei Kategorien: Kritisch, Informativ und Betriebsbedingt. Um die Markierungen innerhalb einer Kategorie anzusehen, klicken Sie auf die zugehörige Registerkarte. Eine Registerkarte ist rot, wenn eine oder mehrere Markierungen innerhalb dieser Kategorie aktiv sind. Auf jeder Registerkarte sind die aktuell aktiven Alarme durch rote Markierungen gekennzeichnet.
- Wählen Sie ProLink > Alarm Log. Dieses Fenster listet alle aktiven Alarme und alle inaktiven aber unbestätigten Stör- und Informationsalarme auf. (Die Auswerteelektronik filtert automatisch die Ignorieren-Alarme aus). Eine grüne Markierung bedeutet "inaktiv aber unbestätigt" und eine rote Markierung bedeutet "aktiv". Alarme sind in zwei Kategorien unterteilt: Hohe Priorität und Niedrige Priorität.

Anmerkung: Die Platzierung der Alarme im Status- und Alarmprotokoll-Fenster wird nicht von der konfigurierten Alarmstufe beeinflusst (siehe Abschnitt 4.11). Alarme im Status-Fenster sind vordefiniert als Kritisch, Informativ oder Betriebsbedingt. Alarme im Alarmprotokoll-Fenster sind vordefiniert als Hohe Priorität oder Niedrige Priorität.

5.4.2 Bestätigen von Alarmen

Sie können die Alarme mit ProLink II oder dem Bedieninterface bestätigen. Bei Auswerteelektroniken mit Bedieninterface kann der Zugriff auf das Alarmmenü aktiviert oder deaktiviert sein und es kann sein, dass ein Passwort erforderlich ist. Wenn der Zugriff auf das Alarmmenü aktiviert ist, ist die gleichzeitige Bestätigung aller Alarme (**Ack All?**) ggf. nicht zulässig. Weitere Informationen zu dieser Funktion finden Sie in Abschnitt 4.18.1.

Wenn die LED-Blinkoption ausgeschaltet ist, blinkt die Status-LED nicht, um unbestätigte Alarme anzuzeigen. Alarme können weiterhin bestätigt werden.

Um Alarme mit dem Bedieninterface zu bestätigen:

- 1. Drücken und halten Sie gleichzeitig **Scroll** und **Select**, bis **SEE ALARM** in der Anzeige erscheint. Siehe Abbildung 5-4.
- 2. Drücken Sie Select.
- 3. Wenn NO ALARM erscheint, gehen Sie zu Schritt 8.
- 4. Wenn Sie alle Alarme bestätigen wollen:
 - a. Scrollen Sie, bis ACK erscheint. Das Wort ACK wechselt ab mit dem Wort ALL?.
 - b. Drücken Sie Select.

Anmerkung: Wenn die Funktion "Alle Alarme bestätigen" deaktiviert ist (siehe Abschnitt 4.18.1), müssen alle Alarme einzeln bestätigt werden. Siehe Schritt 5.

- 5. Wenn Sie einen einzelnen Alarm bestätigen möchten:
 - a. Scrollen Sie, bis der zu bestätigende Alarm erscheint.
 - b. Drücken Sie "Select". Das Wort ALARM wechselt ab mit dem Wort ACK.
 - c. Drücken Sie "Select", um den Alarm zu bestätigen.
- 6. Wenn Sie einen weiteren Alarm bestätigen wollen, gehen Sie zu Schritt 3.
- 7. Wenn Sie KEINEN weiteren Alarm bestätigen wollen, gehen Sie zu Schritt 8.
- 8. Scrollen Sie, bis **EXIT** erscheint.
- 9. Drücken Sie Select.

Um Alarme mit ProLink II zu bestätigen:

- 1. Klicken Sie auf **ProLink > Alarmprotokoll**. Einträge im Alarmprotokoll sind in zwei Kategorien unterteilt: Hohe Priorität und Niedrige Priorität, die der Alarmstufe Störung und Informativ entsprechen. In jeder Kategorie:
 - Alle aktiven Alarme sind mit einem roten Statusindikator versehen.
 - Alle Alarme, die "gelöscht aber unbestätigt sind", sind mit einem grünen Statusindikator versehen.
- 2. Für jeden Alarm, den Sie bestätigen wollen, wählen Sie das ACK Kontrollfeld.

5.5 Verwenden der Summenzähler und Gesamtzähler

Die *Summenzähler* erfassen die Summe der von der Auswerteelektronik über einen bestimmten Zeitraum gemessenen Masse oder des Volumens. Die Summenzähler können angesehen, gestartet, gestoppt und zurückgesetzt werden.

Die *Gesamtzähler* erfassen dieselben Werte wie die Summenzähler, können aber nicht separat zurückgesetzt werden. Da die Gesamtzähler und Summenzähler separat zurückgesetzt werden, können Sie mit einem Gesamtzähler die Gesamtmasse oder das Gesamtvolumen erfassen, während Sie die Summenzähler mehrfach zurücksetzen.

5.5.1 Anzeigen der Summenzähler und Gesamtzähler

Sie können die aktuellen Werte des Massen- und Volumen-Summenzählers sowie des Massen- und Volumen-Gesamtzählers mit einem Feldbus-Host, dem Bedieninterface sowie ProLink II anzeigen.

Mit Feldbus-Host

Wenn Sie den INT Function Block so eingestellt haben, dass er den Status eines der internen Summenzählers oder Gesamtzählers ausgibt (siehe Abschnitt 2.4), können Sie einfach den OUT Parameter des INT Function Blocks auslesen.

Sie können ebenso jeden der internen Summenzähler oder Gesamtzähler ansehen, indem Sie den jeweiligen Transducer Block Parameter ansehen. Siehe Tabelle 5-5.

Tabelle 5-5 Summenzähler und Gesamtzähler – Parameternamen

Summenzähler/Gesamtzähler	Transducer Block	Parametername
Massenzähler	MEASUREMENT	Mass Total: Value
Volumenzähler	MEASUREMENT	Volume Total: Value
Massen-Gesamtzähler	MEASUREMENT	Mass Inventory: Value
Volumen-Gesamtzähler	MEASUREMENT	Volume Inventory: Value
Referenzvolumengas-Summenzähler ⁽¹⁾	MEASUREMENT	Gas Volume Total: Value
Referenzvolumengas-Gesamtzähler ⁽¹⁾	MEASUREMENT	Gas Volume Inventory: Value
Temperaturkorrigierter Volumenzähler	API	API Corr Volume Total: Value
Temperaturkorrigierter Volumen-Gesamtzähler	API	API Corr Vol Inventory: Value
Standardvolumenzähler ⁽²⁾	CONCENTRATION MEASUREMENT	CM Std Volume Total: Value
Standardvolumen-Gesamtzähler ⁽²⁾	CONCENTRATION MEASUREMENT	CM Std Vol Inventory: Value

Summenzähler/Gesamtzähler	Transducer Block	Parametername
Netto-Massenzähler ⁽²⁾	CONCENTRATION MEASUREMENT	CM Net Mass Total: Value
Nettomassen-Gesamtzähler ⁽²⁾	CONCENTRATION MEASUREMENT	CM Net Mass Inventory: Value
Netto-Volumenzähler ⁽²⁾	CONCENTRATION MEASUREMENT	CM Net Volume Total: Value
Nettovolumen-Gesamtzähler ⁽²⁾	CONCENTRATION MEASUREMENT	CM Net Vol Inventory: Value

Tabelle 5-5 Summenzähler und Gesamtzähler – Parameternamen (Fortsetzung)

(1) Nicht verfügbar, wenn die Anwendung Mineralölmessung oder Konzentrationsmessung aktiviert ist.

(2) Nicht alle dieser Zähler stehen zu jeder Zeit zur Verfügung. Die verfügbaren Zähler sind abhängig von der Konfiguration der Anwendung Konzentrationsmessung.

Mit Bedieninterface

Sie können die Summenzähler oder Gesamtzähler mit dem Bedieninterface nur dann ansehen, wenn das Bedieninterface entsprechend konfiguriert wurde. Siehe Abschnitt 4.18.5.

- 1. Um die Werte der Summenzähler anzeigen, **Scroll**, bis die Prozessvariable **TOTAL** erscheint und die Messeinheiten folgendermaßen sind:
 - Für den Massenzähler, Masseneinheiten (z. B., kg, lb)
 - Für den Volumennzähler, Volumeneinheiten (z. B., gal, cuft)
 - Für die Mineralölmessungs- oder Konzentrationsmessungs-Summenzähler wechselt die Masse- oder Volumeneinheit mit der Prozessvariablen ab (z. B. TCORR oder NET M) (siehe Tabelle G-1).

Siehe Abbildung 5-6. Lesen Sie den aktuellen Wert von der oberen Zeile des Displays ab.

- 2. Um Gesamtzähler anzuzeigen, Scroll, bis die Prozessvariablen TOTAL erscheint und:
 - Für den Massen-Gesamtzähler wechselt das Wort MASSI (Massen-Gesamtzähler) mit der Messeinheit ab
 - Für den Volumen.Gesamtzähler wechselt das Wort LVOLI (Betriebsvolumen-Gesamtzähler) mit der Messeinheit ab
 - Für die Mineralölmessungs- oder Konzentrationsmessungs-Gesamtzähler wechselt die Massen- oder Volumeneinheit mit der Prozessvariablen (z. B. **TCORI** oder **NET VI**) ab (siehe Tabelle G-1).

Siehe Abbildung 5-6. Lesen Sie den aktuellen Wert von der oberen Zeile des Displays ab.

Mit ProLink II

Um den aktuellen Wert der Summen- und Gesamtzähler mit ProLink II anzuzeigen, wählen Sie:

- **ProLink > Process Variables**, um die Summen- und Gesamtzähler anzusehen
- ProLink > API Prozessvariablen, um die API Summenzähler und Gesamtzähler anzusehen
- **ProLink > CM Process Variables**, um die KM-Summen- und Gesamtzähler anzusehen

5.5.2 Steuern der Summenzähler und Gesamtzähler

Tabelle 5-6 zeigt alle Zählerfunktionen sowie die Konfigurationsmittel an.

Tabelle 5-6 Steuerungsmethoden der Summenzähler und Gesamtzähler

Funktion	Feldbus-Host	ProLink II	Bedieninterface (1)
Stoppen aller Summenzähler und Gesamtzähler	Ja	Ja	Ja
Starten aller Summenzähler und Gesamtzähler	Ja	Ja	Ja
Nur Massen- oder Volumenzähler zurücksetzen	Ja	Ja	Ja ⁽²⁾
Nur API-Summenzähler zurücksetzen	Ja	Nein	Ja ⁽²⁾
Nur KM-Summenzähler zurücksetzen	Ja	Ja	Ja ⁽²⁾
Alle Summenzähler zurücksetzen	Ja	Ja	Nein
Alle Gesamtzähler zurücksetzen	Ja	Ja ⁽³⁾	Nein
Individuelle Gesamtzähler zurücksetzen	Ja	Ja ⁽³⁾	Nein

(1) Diese Funktionen des Bedieninterface können aktiviert oder deaktiviert sein. Siehe Abschnitt 4.18.

(2) Diese Funktion ist nur verfügbar, wenn der entsprechende Summenzähler als Displayvariable konfiguriert ist (siehe Abschnitt 4.18.5).

(3) Wenn in den ProLink II Einstellungen aktiviert.

Störungsanalyse und -behebung

Betrieb

Mit Feldbus-Host

Wenn Sie den INT Function Block so eingestellt haben, dass er den Status eines internen Zählers ausgibt (d. h. nicht *Standard*-Modus) (siehe Abschnitt 2.4), können Sie diesen Zähler durch Wählen des INT Function Blocks und Setzen des Methodenparameters OP_CMD_INT auf *Reset* zurücksetzen.

Sie können die internen Zähler außerdem direkt mittels den Methodenparametern aus Tabelle 5-7 steuern.

Tabelle 5-7. Summenzähler/Gesamtzähler Steuerung – Feldbus-Host

Funktion	Diesen Transducer Block wählen	Diesen Methodeparameter verwenden
Stoppen aller Summenzähler und Gesamtzähler	MEASUREMENT	Stop All Totals
Starten aller Summenzähler und Gesamtzähler	MEASUREMENT	Start Totals
Massenzähler zurücksetzen	MEASUREMENT	Reset Mass Total
Volumenzähler zurücksetzen	MEASUREMENT	Reset Volume Total
Gasvolumenzähler zurücksetzen	MEASUREMENT	Reset Gas Standard Volume Total
API-Summenzähler zurücksetzen	API	Reset API Volume Total
KM-Standardvolumenzähler zurücksetzen	CONCENTRATION MEASUREMENT	Reset CM Std Volume Total
KM-Netto-Massenzähler zurücksetzen	CONCENTRATION MEASUREMENT	Reset CM Net Mass Total
KM-Netto-Volumenzähler zurücksetzen	CONCENTRATION MEASUREMENT	Reset CM Net Volume Total
Massen-Gesamtzähler zurücksetzen	MEASUREMENT	Reset Mass Inventory
Volumen-Gesamtzähler zurücksetzen	MEASUREMENT	Reset Volume Inventory
Gasvolumen-Gesamtzähler zurücksetzen	MEASUREMENT	Reset Gas Standard Volume Inventory
API-Gesamtzähler zurücksetzen	API	Reset API Inventory
KM-Standardvolumen-Gesamtzähler zurücksetzen	CONCENTRATION MEASUREMENT	Reset CM Volume Inventory
KM-Nettomassen-Gesamtzähler zurücksetzen	CONCENTRATION MEASUREMENT	Reset CM Net Mass Inventory
KM-Nettovolumen-Gesamtzähler zurücksetzen	CONCENTRATION MEASUREMENT	Reset CM Net Volume Inventory
Gleichzeitig alle Summenzähler zurücksetzen	MEASUREMENT	Reset Totalizers
Gleichzeitig alle Gesamtzähler zurücksetzen	MEASUREMENT	Reset Inventories

Mit ProLink II

Zur Steuerung der KM-Summenzähler und Gesamtzähler wählen Sie **ProLink > CM Totalizer Control**. Zur Steuerung aller anderen Summenzähler- und Gesamtzähler-Funktionen wählen Sie **ProLink > Totalizer Control**.

Um die Gesamtzähler mit ProLink II zurückzusetzen, müssen Sie zuerst diese Funktion aktivieren. Um das Zurücksetzen der Gesamtzähler mit ProLink II zu aktivieren:

- 1. Wählen Sie View > Preferences.
- 2. Wählen Sie das Kontrollfeld Enable Inventory Totals Reset.
- 3. Klicken Sie auf **Apply**.

Betrieb

Mit Bedieninterface

Abbildung 5-7 zeigt die Steuerung der Summenzähler und Gesamtzähler mit dem Bedieninterface.

- Die Funktion "Starten oder Stoppen der Summenzähler und Gesamtzähler" startet oder stoppt alle Summenzähler und Gesamtzähler gleichzeitig.
- Die Funktion "Zurücksetzen der Summenzähler" setzt nur den ausgewählten Summenzähler zurück. Gesamtzähler können nicht über das Bedieninterface zurückgesetzt werden.

Abbildung 5-7 Displaymenü – Steuern der Summenzähler und Gesamtzähler

(1) Wird nur angezeigt, wenn als Displayvariable konfiguriert (siehe Abschnitt 4.18.5).

(2) Die Anwendung Mineralölmessung oder Anwendung Konzentrationsmessung muss aktiviert sein.

(3) Das Bedieninterface muss so konfiguriert sein, dass das Zurücksetzen der Zähler zugelassen ist (siehe Abschnitt 4.18).

(4) Das Bedieninterface muss so konfiguriert sein, dass Stoppen und Starten zugelassen ist (siehe Abschnitt 4.18).

Kapitel 6 Störungsanalyse und -beseitigung

6.1 Übersicht

Dieser Abschnitt beschreibt Richtlinien und Vorgehensweisen zur Störungsanalyse und -beseitigung bei Durchflussmessern. Mit den Information in diesem Abschnitt können Sie:

- Ein Problem kategorisieren
- Feststellen, ob Sie das Problem beheben können
- Korrekturmaßnahmen ergreifen (wenn möglich)

Anmerkung: Alle Vorgehensweisen in diesem Kapitel gehen davon aus, dass Sie eine Kommunikation mit der Auswerteelektronik hergestellt haben und dass Sie alle Sicherheitsanforderungen einhalten. Siehe Anhang E und F.

6.2 Leitfaden zur Störungsanalyse und -beseitigung

Tabelle 6-1 listet die Fehlersymptome auf, die in diesem Kapitel behandelt werden.

Tabelle 6-1	Fehlersymptome
-------------	----------------

Thema	Abschnitt
Auswerteelektronik funktioniert nicht	Abschnitt 6.3
Auswerteelektronik kommuniziert nicht	Abschnitt 6.4
Nullpunkt- oder Kalibrierfehler	Abschnitt 6.5
AI Block Konfigurationsfehler	Abschnitt 6.6
Ausgangsprobleme	Abschnitt 6.7
Alarm-Festdatenverlust	Abschnitt 6.8
Statusalarme	Abschnitt 6.9
Diagnostizieren von Verdrahtungsproblemen	Abschnitt 6.10
Prüfen auf Schwallströmung	Abschnitt 6.11
Wiederherstellen einer funktionierenden Konfiguration	Abschnitt 6.12
Prüfen der Testpunkte	Abschnitt 6.13
Prüfen des Core-Prozessors	Abschnitt 6.14
Prüfen der Sensorspulen und Widerstandsthermometer	Abschnitt 6.15

6.3 Auswerteelektronik funktioniert nicht

Wenn die Auswerteelektronik mit Spannung versorgt ist, aber alle Blocks außer Betrieb sind, siehe Abschnitt 6.8.

Wenn die Auswerteelektronik nicht mit Spannung versorgt wird und nicht über das Netzwerk oder Bedieninterface kommuniziert, führen Sie alle Verfahren in Abschnitt 6.10 durch. Wenn die Überprüfung der Verdrahtung kein Problem der elektrischen Anschlüsse zeigt, setzen Sie sich mit Emerson Process Management in Verbindung.

6.4 Auswerteelektronik kommuniziert nicht

Wenn die Auswerteelektronik keine Kommunikation herstellt:

- Stellen Sie sicher, dass das gesamte Feldbus-Netzwerk nur einmal geerdet wurde (individuelle Segmente dürfen nicht geerdet werden).
- Führen Sie die Verfahren in Abschnitt 6.10.4 durch.
- Falls Sie einen Konfigurator von National Instruments[®] verwenden, führen Sie die Verfahren in Abschnitt 6.4.1 durch.
- Überprüfen Sie die Softwareversion, die beim Einschalten des Geräts auf dem Display erscheint.
- Überprüfen Sie, ob die Feldbus-Software in die Auswerteelektronik geladen ist. Beim Einschalten des Geräts zeigt das Display kurzzeitig den Versionsstand an. Für die Version 1.0 wird 1.0 angezeigt. Bei anderen Versionen wird x.x F angezeigt.

6.4.1 Eckdaten von National Instruments

Prüfen der Dlme Basic Info:

- 1. Starten Sie das Konfigurations-Dienstprogramm für das National Instruments Interface.
- 2. Wählen Sie den entsprechenden Port, normalerweise Port 0.
- 3. Klicken Sie auf **Edit**.
- 4. Klicken Sie auf **Advanced**.
- 5. Prüfen Sie folgende Informationen:
 - Slot Time = 7
 - Max Response Delay = 3
 - Min Inter-Pdu Delay = 6

6.5 Nullpunkt- oder Kalibrierfehler

Bei einem Nullpunkt- oder Kalibrierfehler sendet die Auswerteelektronik einen oder mehrere Statusalarme, der/die die Ursache des Fehlers anzeigt/anzeigen. In Tabelle 6-3 werden die Statusalarme und entsprechende Abhilfemaßnahmen beschrieben.

6.6 Al Block Konfigurationsfehler

Bei der Konfiguration der Maßeinheiten mittels ProLink II oder Bedieninterface kann dazu kommen, dass in den AI Blocks einen Konfigurationsfehler gesetzt wird, wenn die AI Blocks nicht mit den gleichen Maßeinheiten konfiguriert wurden. Dies kommt daher, dass ProLink II und das Bedieninterface die Maßeinheiten im MEASUREMENT Transducer Block setzen, nicht aber im AI Block. Deshalb müssen die AI Blocks separat entsprechend konfiguriert werden, wenn die Einheiten mittels ProLink II oder Bedieninterface konfiguriert wurden.

Siehe Abschnitt 4.4 bezüglich weiterer Informationen über die Konfiguration der Maßeinheiten.

6.7 Ausgangsprobleme

Micro Motion empfiehlt, die nachfolgend aufgeführten Prozessvariablen unter normalen Betriebsbedingungen zu notieren. So können Sie leichter erkennen, wenn Prozessvariablen ungewöhnlich hohe oder niedrige Werte annehmen.

- Strömungsgeschwindigkeit
- Dichte
- Temperatur
- Messrohrfrequenz
- Aufnehmerspannung
- Antriebsverstärkung

Bei der Störungsanalyse prüfen Sie die Prozessvariablen unter normalen Betriebsbedingungen sowie bei Nulldurchfluss mit gefüllten Messrohren. Mit Ausnahme der Strömungsgeschwindigkeit, sollten nur kleine oder gar keine Abweichungen zwischen den Werten bei Durchfluss und bei Nulldurchfluss auftreten. Wenn Sie signifikante Abweichungen feststellen, halten Sie die Werte fest und nehmen Sie Kontakt mit dem Micro Motion Kundenservice auf.

Ungewöhnliche Werte für Prozessvariablen können auf eine Vielzahl verschiedenartiger Probleme hindeuten. Tabelle 6-2 listet einige mögliche Probleme sowie Abhilfemaßnahmen auf.

Symptom	Ursache	Mögliche Abhilfen
Al Block Fehler	Falsche Maßeinheiten	Sicherstellen, dass der Parameter Transducer Scale: Units Index den spezifizierten Einheiten für diese Prozessvariable im Transducer Block entspricht.
Kein Ausgang oder falsche Prozessvariable	AI Kanalparameter falsch	Prüfen Sie, ob der Al Kanalparameter im Al Block den korrekten Transducer Block Messkanälen entspricht.
Ständiger Durchfluss bei Nulldurchflussbedingungen	Nicht fluchtende Rohrleitung (speziell bei neuen Installationen)	Rohrleitung korrigieren.
	Offenes oder undichtes Ventil	Ventilmechanismus prüfen oder korrigieren.
	Schlechter Sensor-Nullpunkt	Nullpunktkalibrierung des Durchflussmesers durchführen. Siehe Abschnitt 2.7.
	Schlechter Durchflusskalibrierfaktor	Charakterisierung prüfen. Siehe Abschnitt 6.7.4.

Tabelle 6-2 Ausgangsprobleme und mögliche Abhilfen

Symptom	Ursache	Mögliche Abhilfen
Sprunghafter Durchfluss bei Nulldurchflussbedingungen	Verdrahtungsproblem	Komplette Verdrahtung zwischen Sensor und Auswerteelektronik prüfen und sicherstellen, dass guter Kontakt besteht. Siehe Installationsanleitung.
	Falsch geerdetes 9-adriges Kabel (nur bei 9-adriger externer Installation sowie externem Core-Prozessor mit extern installierter Auswerteelektronik)	9-adrige Kabelinstallation prüfen. Siehe Installationsanleitung.
	Rauschen in der Feldbus-Verdrahtung	Prüfen, ob die Verdrahtung richtig gegen Rauschen abgeschirmt ist. Siehe Installationsanleitung.
	Falsch eingestellte oder schlechte Spannungsversorgung	Siehe Abschnitt 6.7.6.
	Vibrationen der Rohrleitung, deren Frequenz im Bereich Sensor-Messrohrfrequenz liegt	Umgebung prüfen und Vibrationsquellen beseitigen.
	Leckage an Ventil oder Abdichtung	Rohrleitung prüfen.
	Ungeeignete Maßeinheit	Maßeinheiten mittels Feldbus-Host prüfen.
	Ungeeigneter Dämpfungswert	Dämpfung prüfen. Siehe Abschnitt 6.7.1.
	Schwallströmung	Siehe Abschnitt 6.11.
	Verstopfte Messrohre	Antriebsverstärkung und Messrohrfrequenz prüfen. Messrohre spülen.
	Feuchtigkeit in der Sensor-Anschlussdose (nur bei 9-adriger Installation mit externem Core-Prozessor mit externer Auswerteelektronik)	Anschlussdose öffnen und trocknen. Kein Kontaktmittel verwenden. Beim Schließen sicherstellen, dass Dichtungen und O-Ringe unbeschädigt und die O-Ringe eingefettet sind.
	Montagespannungen auf dem Sensor	 Sensormontage prüfen. Sicherstellen, dass: Sensor nicht zur. Rohrleitungsabstützung verwendet wird. Sensor nicht zur Korrektur des Rohrleitungsversatzes verwendet wird. Sensor nicht zu schwer für die Rohrleitung ist.
	Sensor-Kreuzkoppelung	Umgebung auf Sensor mit ähnlicher Messrohrfrequenz (±0,5 Hz) prüfen.
	Falsche Erdung des Sensors	Sensorerdung überprüfen. Siehe Installationsanleitung.
	Falsche Sensor-Einbaulage	Nicht alle Einbaulagen sind geeignet für alle Prozessmedien. Siehe Installationsanleitung Ihres Sensors.

Tabelle 6-2 Ausgangsprobleme und mögliche Abhilfen (Fortsetzung)

Tabelle 6-2 Ausgangsprobleme und mögliche Abhilfen (Fortsetzung)

Symptom	Ursache	Mögliche Abhilfen
Sprunghafter Durchflusswert bei stabilem Durchfluss	Problem mit der Ausgangsverdrahtung	Feldbus-Verdrahtung prüfen.
	Ungeeignete Maßeinheit	Maßeinheiten mittels Feldbus-Tool prüfen.
	Ungeeigneter Dämpfungswert	Dämpfung prüfen. Siehe Abschnitt 6.7.1.
	Übermäßige oder sprunghafte Antriebsverstärkung	Siehe Abschnitt 6.13.3 und 6.13.4.
	Schwallströmung	Siehe Abschnitt 6.11.
	Verstopfte Messrohre	Antriebsverstärkung und Messrohrfrequenz prüfen. Messrohre spülen. Evtl. Austausch des Sensors erforderlich.
	Verdrahtungsproblem	Komplette Verdrahtung zwischen Sensor und Auswerteelektronik prüfen und sicherstellen, dass guter Kontakt besteht. Siehe Installationsanleitung.
Ungenauer Durchfluss	Schlechter Durchflusskalibrierfaktor	Charakterisierung prüfen. Siehe Abschnitt 6.7.4.
	Ungeeignete Maßeinheit	Maßeinheiten mittels Feldbus-Host prüfen.
	Schlechter Sensor-Nullpunkt	Nullpunktkalibrierung des Durchflussmessers. Siehe Abschnitt 2.7.
	Schlechte Dichtekalibrierfaktoren	Charakterisierung prüfen. Siehe Abschnitt 6.7.4.
	Schlechte Erdung des Durchflussmessers	Siehe Abschnitt 6.10.3.
	Schwallströmung	Siehe Abschnitt 6.11.
	Falsche Linearisierungseinstellung	Siehe Abschnitt 6.7.7.
	Verdrahtungsproblem	Komplette Verdrahtung zwischen Sensor und Auswerteelektronik prüfen und sicherstellen, dass guter Kontakt besteht. Siehe Installationsanleitung.
Ungenauer Dichtewert	Problem mit dem Prozessmedium	Qualität des Prozessmediums nach den üblichen Verfahren prüfen.
	Schlechte Dichtekalibrierfaktoren	Charakterisierung prüfen. Siehe Abschnitt 6.7.4.
	Verdrahtungsproblem	Komplette Verdrahtung zwischen Sensor und Auswerteelektronik prüfen und sicherstellen, dass guter Kontakt besteht. Siehe Installationsanleitung.
	Schlechte Erdung des Durchflussmessers	Siehe Abschnitt 6.10.3.
	Schwallströmung	Siehe Abschnitt 6.11.
	Sensor-Kreuzkoppelung	Umgebung auf Sensor mit ähnlicher Messrohrfrequenz (±0,5 Hz) prüfen.
	Verstopfte Messrohre	Antriebsverstärkung und Messrohrfrequenz prüfen. Messrohre spülen. Evtl. Austausch des Sensors erforderlich.

Symptom	Ursache	Mögliche Abhilfen
Temperaturwert weicht signifikant von der Prozesstemperatur ab	Fehlerhafter Widerstandsthermometer	Alarmbedingungen prüfen und bei Alarm die angezeigten Maßnahmen zur Fehlerbehebung ergreifen.
	Falsche Kalibrierfaktoren	Temperaturkalibrierung durchführen. Siehe Abschnitt 3.7.
		Charakterisierung prüfen. Siehe Abschnitt 6.7.4.
Temperaturwert weicht geringfügig von der Prozesstemperatur ab	Falsche Kalibrierfaktoren	Temperaturkalibrierung durchführen. Siehe Abschnitt 3.7.
		Charakterisierung prüfen. Siehe Abschnitt 6.7.4.
Ungewöhnlich hoher Dichtewert	Verstopfte Messrohre	Antriebsverstärkung und Messrohrfrequenz prüfen. Messrohre spülen. Evtl. Austausch des Sensors erforderlich.
	Falscher K2-Wert	Charakterisierung prüfen. Siehe Abschnitt 6.7.4.
Ungewöhnlich niedriger Dichtewert	Schwallströmung	Siehe Abschnitt 6.11.
	Falscher K2-Wert	Charakterisierung prüfen. Siehe Abschnitt 6.7.4.
Ungewöhnlich hohe Messrohrfrequenz	Sensorerosion	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
Ungewöhnlich niedrige Messrohrfrequenz	Verstopfte Messrohre	Antriebsverstärkung und Messrohrfrequenz prüfen. Messrohre spülen. Evtl. Austausch des Sensors erforderlich.
Ungewöhnlich niedrige Spannung der Aufnehmerspulen	Verschiedene mögliche Ursachen	Siehe Abschnitt 6.13.5.
Ungewöhnlich hohe Antriebsverstärkung	Verschiedene mögliche Ursachen	Siehe Abschnitt 6.13.3.

Tabelle 6-2 Ausgangsprobleme und mögliche Abhilfen (Fortsetzung)

6.7.1 Dämpfung

Ein nicht korrekt eingestellter Dämpfungswert lässt das Ausgangssignal der Auswerteelektronik zu träge oder zu unregelmäßig erscheinen. Passen Sie die Parameter Flow Damping, Temperature Damping und Density Damping im MEASUREMENT Transducer Block an, um den gewünschten Dämpfungseffekt zu erreichen. Siehe Abschnitt 4.12.

Weitere Probleme der Dämpfung

Falls die Auswerteelektronik Dämpfungswerte falsch umzusetzen scheint oder die Dämpfungsauswirkungen sich durch Änderung der Dämpfungsparameter im MEASUREMENT Transducer Block nicht verändern, dann kann es sein, dass der Parameter Value Filter Time in einem AI Function Block nicht korrekt eingestellt wurde. Überprüfen Sie jeden AI Function Block und stellen Sie sicher, dass der Parameter Process Value Filter Time auf Null gesetzt ist.

6.7.2 Durchfluss-Abschaltung

Falls die Auswerteelektronik unerwartet ein Ausgangssignal von Null ausgibt, dann kann es sein, dass ein Parameter für die Abschaltung falsch gesetzt wurde. Mehr Informationen zur Konfiguration der Abschaltungen finden Sie in Abschnitt 4.14.

6.7.3 Ausgangsskalierung

Eine falsch konfigurierte Ausgangsskalierung kann die Ursache sein, dass die Auswerteelektronik unerwartete Ausgangswerte ausgibt. Prüfen Sie, ob die Transducer Scale und Output Scale Werte jedes AI Blocks korrekt eingerichtet sind. Siehe Abschnitt 4.9.

6.7.4 Charakterisierung

Falsche Charakterisierungsparameter können die Ursache sein, dass die Auswerteelektronik unerwartete Ausgangswerte ausgibt. Eine falsche Charakterisierung sollten Sie jedoch nur unter besonderen Umständen vermuten (z. B. erste Installation der Auswerteelektronik mit dem Sensor, Austausch des Core-Prozessors). Weitere Informationen zur Charakterisierung finden Sie in Abschnitt 3.3.

6.7.5 Kalibrierfehler

Eine falsche Kalibrierung kann die Ursache sein, dass die Auswerteelektronik unerwartete Ausgangswerte ausgibt. Eine falsche Kalibrierung sollten Sie nur dann vermuten, wenn das Durchflussmesser kürzlich im Feld kalibriert wurde. Weitere Informationen zur Kalibrierung finden Sie in Abschnitt 3.2.4.

Anmerkung: Um das Durchflussmesser auf ein geeichtes Messnormal abzugleichen oder einen Messfehler zu korrigieren, empfiehlt Micro Motion die Verwendung der Gerätefaktoren anstelle der Durchführung einer Kalibrierung. Bevor Sie Ihren Durchflussmesser kalibrieren, setzen Sie sich mit Micro Motion in Verbindung. Weitere Informationen über Gerätefaktoren finden Sie in Abschnitt 3.5.

6.7.6 Feldbus-Netzwerk Power Conditioner

Ein falsch eingestellter oder defekter Power Conditioner kann die Ursache für eine fehlerhafte Kommunikation der Auswerteelektronik sein. Beim MTL Power Conditioner muss der rote Schalter (duale Redundanz) auf *Normal Mode* eingestellt werden. Der gelbe Schalter (Abschluss) muss auf *Termination In* eingestellt werden. Wenn sie weitere Probleme mit dem Power Conditioner vermuten, setzen Sie sich mit Micro Motion in Verbindung.

6.7.7 Linearisierung

Der Linearisierungsparameter in jedem AI Function Block kann sich auf das Ausgangssignal der Auswerteelektronik auswirken. Stellen Sie sicher, dass der Linearization Type Parameter richtig eingestellt ist. Siehe Abschnitt 4.8.

6.8 EEPROM-Prüfsummenfehler

Nach Durchführung einer EEPROM-Initialisierung (Initialize NVM) mit Micro Motion Load Utility kann es sein, dass der Resource Block außer Betrieb ist.

Verwenden Sie die Methode Reset Processor der Micro Motion Load Utility, um alle Resource Blocks und Function Blocks zurückzusetzen.

6.9 Statusalarme

Statusalarme werden durch einen Feldbus-Host, dem Bedieninterface und ProLink II ausgegeben. Abhilfen für den jeweils angezeigten Statusalarm finden Sie in Tabelle 6-3.

Tabelle 6-3 Statusalarme und Abhilfen

Alarmcode	Beschreibung	Mögliche Abhilfen
A001	(E)EPROM-Prüfsummenfehler (CP)	Die Spannungsversorgung der Auswerteelektronik aus-/einschalten.
		Der Durchflussmesser muss ggf. überprüft werden. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A002	RAM-Fehler (CP)	Die Spannungsversorgung der Auswerteelektronik aus-/einschalten.
		Der Durchflussmesser muss ggf. überprüft werden. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A003	Sensorfehler	Testpunkte prüfen. Siehe Abschnitt 6.13.
		Sensorspulen überprüfen. Siehe Abschnitt 6.15.
		Sensorverdrahtung prüfen. Siehe Abschnitt 6.10.2.
		Auf Schwallströmung prüfen. Siehe Abschnitt 6.11.
		Messrohre des Sensors prüfen.

Tabelle 6-3 Statusalarme und Abhilfen (Fortsetzung)

Alarmcode	Beschreibung	Mögliche Abhilfen
A004	Temperatursensorfehler	Testpunkte prüfen. Siehe Abschnitt 6.13.
		Sensorspulen überprüfen. Siehe Abschnitt 6.15.
		Sensorverdrahtung prüfen. Siehe Abschnitt 6.10.2.
		Prüfen, ob die Prozesstemperatur innerhalb des Bereichs von Sensor und Auswerteelektronik liegt.
		Charakterisierung des Durchflussmessers prüfen. Siehe Abschnitt 6.7.4.
		Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A005	Eingang Bereichsüberschreitung	Testpunkte prüfen. Siehe Abschnitt 6.13.
		Sensorspulen überprüfen. Siehe Abschnitt 6.15.
		Prozessbedingungen überprüfen.
		Sicherstellen, dass die Auswerteelektronik auf die richtigen Maßeinheiten konfiguriert ist. Siehe Abschnitt 4.4.
		Charakterisierung des Durchflussmessers prüfen. Siehe Abschnitt 6.7.4.
		Nullpunktkalibrierung der Auswerteelektronik durchführen. Siehe Abschnitt 2.7.
A006	Nicht konfiguriert	Charakterisierung prüfen. Speziell FCF- und K1-Werte prüfen. Siehe Abschnitt 3.3.
		Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A008	Messbereichsüberschreitung für Dichte	Testpunkte prüfen. Siehe Abschnitt 6.13.
		Sensorspulen überprüfen. Siehe Abschnitt 6.15.
		Prüfen auf Luft in den Messrohren, Messrohre nicht gefüllt, Fremdkörper oder Ablagerungen in den Messrohren.
		Charakterisierung prüfen. Siehe Abschnitt 6.7.4.
A009	Auswerteelektronik Initialisierung/Aufwärmphase	Lassen Sie die Auswerteelektronik warmlaufen. Die Fehlermeldung sollte erlöschen, sobald die Auswerteelektronik für den Normalbetrieb bereit ist. Falls der Alarm nicht gelöscht wird, stellen Sie sicher, dass der Sensor voll gefüllt oder komplett leer ist. Prüfen Sie die Sensorkonfiguration und die Verdrahtung zwischen Auswerteelektronik und Sensor (siehe Installationsanleitung).
A010	Kalibrierungsfehler	Erscheint während der Nullpunktkalibrierung ein Alarm, stellen Sie sicher, dass kein Durchfluss durch den Sensor anliegt, und versuchen Sie es erneut.
		Spannungsversorgung aus-/einschalten und erneut versuchen.
A011	Kal – zu niedrig	Stellen Sie sicher, dass kein Durchfluss durch den Sensor anliegt und versuchen Sie es erneut.
		Spannungsversorgung aus-/einschalten und erneut versuchen.
A012	Kal – zu hoch	Stellen Sie sicher, dass kein Durchfluss durch den Sensor anliegt und versuchen Sie es erneut.
		Spannungsversorgung aus-/einschalten und erneut versuchen.

Alarmcode	Beschreibung	Mögliche Abhilfen
A013	Kal – Verrauscht	Elektromagnetische Störungsquellen eliminieren und die Nullpunktkalibrierung erneut starten. Mögliche Rauschquellen: • Mechanische Pumpen • Elektrische Störungen • Vibrationen von Maschinen in der Nähe
		Spannungsversorgung aus-/einschalten und erneut versuchen.
A014	Auswerteelektronik-Fehler	Die Spannungsversorgung der Auswerteelektronik aus-/einschalten.
		Der Durchflussmesser muss ggf. überprüft werden. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A016	Widerstandsthermometer in Rohrleitung -	Testpunkte prüfen. Siehe Abschnitt 6.13.
	l emperatur-Bereichsüberschreitung	Sensorspulen überprüfen. Siehe Abschnitt 6.15.
		Sensorverdrahtung prüfen. Siehe Installationsanleitung.
		Stellen Sie sicher, dass der richtige Sensortyp konfiguriert ist. Siehe Abschnitt 3.3.1.
		Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A017	Widerstandsthermometer in Messgerät – Temperatur-Bereichsüberschreitung	Testpunkte prüfen. Siehe Abschnitt 6.13.
		Sensorspulen überprüfen. Siehe Abschnitt 6.15.
		Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A018	(E)EPROM-Prüfsummenfehler	Die Spannungsversorgung der Auswerteelektronik aus-/einschalten.
		Der Durchflussmesser muss ggf. überprüft werden. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A019	Fehler RAM- oder ROM-Test	Die Spannungsversorgung der Auswerteelektronik aus-/einschalten.
		Der Durchflussmesser muss ggf. überprüft werden. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A020	Kalibrierfaktoren nicht eingegeben	Charakterisierung prüfen. Speziell den FCF-Wert prüfen. Siehe Abschnitt 3.3.
A021	Falscher Sensortyp (K1)	Charakterisierung prüfen. Speziell den K1-Wert prüfen. Siehe Abschnitt 3.3.
A025	Geschützter Bootsektor-Fehler (CP)	Die Spannungsversorgung zum Messsystem aus-/einschalten.
		Der Durchflussmesser muss ggf. überprüft werden. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.

Tabelle 6-3 Statusalarme und Abhilfen (Fortsetzung)

Alarmcode	Beschreibung	Mögliche Abhilfen
A026	Sensor/Auswerteelektronik – Kommunikationsfehler	Verdrahtung zwischen Auswerteelektronik und Core-Prozessor prüfen (siehe Abschnitt 6.10.2). Möglicherweise sind die Leitungen vertauscht. Nach dem Tauschen der Leitungen, Spannungsversorgung aus-/einschalten.
		Auf Rauschen in der Verdrahtung oder der Umgebung der Auswerteelektronik prüfen.
		Core-Prozessor-LED prüfen. Siehe Abschnitt 6.14.2.
		Core-Prozessor-Widerstandstest durchführen. Siehe Abschnitt 6.14.3.
A028	Core-Prozessor-Schreibfehler	Die Spannungsversorgung zum Messsystem aus-/einschalten.
		Der Durchflussmesser muss ggf. überprüft werden. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A031	Spannung zu niedrig	Die Spannungsversorgung zum Core-Prozessor reicht nicht aus. Spannungsversorgung zur Auswerteelektronik prüfen und Verdrahtung der Spannungsversorgung zwischen Auswerteelektronik und Core-Prozessor prüfen (nur 4-adrige externe Installationen).
A032	Smart-Systemverifizierung läuft und Ausgänge fixiert	Das Verfahren beenden lassen.
		Falls erforderlich, das Verfahren abbrechen, die Ausgänge auf Continue Measurement einstellen und das Verfahren neu starten.
A033	Sensor OK / Messrohre vom Prozess gestoppt	Kein Signal von LPO oder RPO, vermutlich schwingen die Sensor-Messrohre nicht. Den Prozess prüfen. Prüfen, ob Luft in den Messrohren vorhanden ist, die Messrohre nicht gefüllt sind oder sich Fremdkörper oder Ablagerungen in den Messrohren befinden.
A034	Smart-Systemverifizierung fehlgeschlagen	Test erneut durchführen. Wenn der Test erneut fehlschlägt, siehe Abschnitt 3.4.3.
A035	Smart-Systemverifizierung abgebrochen	Falls gewünscht, den Abbruchcode lesen. Siehe Abschnitt 3.4.3 und die entsprechende Maßnahme ergreifen.
A102	Antrieb Bereichsüberschreitung/Messrohr teilweise gefüllt	Übermäßige oder sprunghafte Antriebsverstärkung Siehe Abschnitt 6.13.3.
		Sensorspulen überprüfen. Siehe Abschnitt 6.15.
A103	Möglicher Datenverlust (Summen- und Gesamtzähler)	Die Spannungsversorgung der Auswerteelektronik aus-/einschalten.
		Der Durchflussmesser muss ggf. überprüft werden. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A104	Kalibrierung läuft	Die Kalibrierung durchführen lassen.
A105	Schwallströmung	Die Schwallströmung durch den Prozess beenden lassen.
		Siehe Abschnitt 6.11.
A106	AI/AO Simulation aktiv	Simulationsmodus deaktivieren. Siehe Abschnitt 5.3.1.
A107	Spannungsunterbrechung eingetreten	Keine Maßnahme erforderlich.
A116	API: Temperatur außerhalb des Standardbereichs	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.

Alarmcode	Beschreibung	Mögliche Abhilfen
A117	API: Dichte außerhalb des Standardbereichs	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A120	KM: Kurvendaten passen nicht	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A121	KM: Extrapolationsalarm	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A128	Werkskonfigurationsdaten ungültig	Die Spannungsversorgung der Auswerteelektronik aus-/einschalten.
		Der Durchflussmesser muss ggf. überprüft werden. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A0129	Werkskonfigurationsdaten – Prüfsumme ungültig	Die Spannungsversorgung der Auswerteelektronik aus-/einschalten.
		Der Durchflussmesser muss ggf. überprüft werden. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
A131	Smart-Systemverifizierung läuft	Das Verfahren beenden lassen.
		Falls erforderlich, das Verfahren abbrechen, die Ausgänge auf Fault setzen und das Verfahren erneut starten.
A132	Simulationsmodus aktiv (Sensor)	Simulationsmodus deaktivieren. Siehe Abschnitt 5.3.2.

Tabelle 6-3 Statusalarme und Abhilfen (Fortsetzung)

6.10 Diagnostizieren von Verdrahtungsproblemen

Befolgen Sie die Verfahren in diesem Abschnitt, um Verdrahtungsprobleme der Auswerteelektronik-Installation zu überprüfen. Vorgehensweisen zur Installation finden Sie in der Betriebsanleitung *Auswerteelektronik Modell 1700 und Modell 2700: Installationsanleitung*

A WARNUNG

Das Entfernen der Deckel vom Anschlussraum bei eingeschalteter Spannung kann in explosionsgefährdeter Atmosphäre zu Explosionen führen.

Bevor Sie die Deckel des Anschlussraumes entfernen, stellen Sie sicher, dass die Spannungsversorgung ausgeschaltet ist und warten dann fünf Minuten.

6.10.1 Prüfen der Verdrahtung der Spannungsversorgung

Um die Verdrahtung der Spannungsversorgung zu prüfen, gehen Sie wie folgt vor:

- 1. Prüfen Sie, ob die richtige externe Sicherung verwendet wird. Eine falsche Sicherung kann den Strom zur Auswerteelektronik begrenzen und so das Hochfahren verhindern.
- 2. Schalten Sie die Spannungsversorgung der Auswerteelektronik aus.
- 3. Befindet sich die Auswerteelektronik in einer explosionsgefährdeten Atmosphäre, warten Sie fünf Minuten.
- 4. Stellen Sie sicher, dass die Kabel der Spannungsversorgung an den richtigen Anschlussklemmen angeschlossen sind. Siehe Installationsanleitung.

- 5. Prüfen Sie, ob die Kabel der Spannungsversorgung guten Kontakt haben und nicht über die Isolierung angeklemmt sind.
- 6. Kontrollieren Sie die Spannungsangabe auf dem Schild an der Innenseite des Anschlussraums für die Feldverdrahtung. Prüfen Sie, ob die Spannungsversorgung für die Auswerteelektronik mit der Spannungsangabe übereinstimmt.
- Prüfen Sie die Spannung an den Anschlussklemmen der Auswerteelektronik mit einem Voltmeter. Stellen Sie sicher, dass sie innerhalb der spezifizierten Grenzen liegt. Bei einer DC-Spannung kann eine andere Kabelauslegung erforderlich sein. Siehe Installationsanleitung.

6.10.2 Prüfen der Verdrahtung zwischen Sensor und Auswerteelektronik

Anmerkung: gilt nicht für Durchflussmesser mit integriert montierter Auswerteelektronik.

Prüfen Sie die Verdrahtung zwischen Sensor und Auswerteelektronik folgendermaßen:

- Ist die Auswerteelektronik am Sensor gemäß dem Schaltplan der Installationsanleitung angeschlossen.
- Haben die Adern guten Kontakt mit den Anschlussklemmen.
- Für 4-adrigen Anschluss, steckt der Verbindungsstecker zwischen Core-Prozessor und Auswerteelektronik sicher im Sockel.

Wenn die Kabel nicht richtig angeschlossen sind:

- 1. Schalten Sie die Spannungsversorgung der Auswerteelektronik aus.
- 2. Wenn sich die Auswerteelektronik in einer explosionsgefährdeter Atmosphäre befindet, warten Sie fünf Minuten, bis Sie den Anschlussraum der Auswerteelektronik öffnen.
- 3. Korrigieren Sie die Verdrahtung.
- 4. Stellen Sie die Spannungsversorgung der Auswerteelektronik wieder her.

6.10.3 Überprüfen der Erdung

Sensor und Auswerteelektronik müssen geerdet sein. Wenn der Core-Prozessor Teil der Auswerteelektronik oder des Sensors ist, so ist er automatisch geerdet. Wenn der CoreProzessor separat installiert ist, muss er auch separat geerdet werden. Siehe Installationsanleitung.

6.10.4 Prüfen der Kommunikationsverdrahtung

Prüfen Sie die Verdrahtung der Kommunikation wie folgt:

- Kommunikationsleitungen und -anschlüsse müssen dem FOUNDATION Fieldbus Verdrahtungsstandard entsprechen.
- Stellen Sie sicher, dass die Leitungen entsprechend den Anweisungen der Installationsanleitung angeschlossen sind.
- Die Kabel müssen guten Kontakt mit den Anschlussklemmen haben.

6.11 Prüfen auf Schwallströmung

Die Dynamik der Schwallströmung ist in Abschnitt 4.13 beschrieben. Wenn die Auswerteelektronik einen Schwallstrom-Alarm anzeigt, prüfen Sie zuerst den Prozess und mögliche mechanische Ursachen für den Alarm:

- Aktuelle Änderungen der Prozessdichte
- Kavitation oder Dampfbildung
- Leckagen
- Sensor-Einbaulage Sensor-Messrohre sollten bei der Messung von Flüssigkeiten nach unten ausgerichtet sein und bei der Messung von Gasen nach oben. Weitere Informationen über die Einbaulage finden Sie in der Dokumentation des Sensors.

Wenn keine mechanische Ursache für die Schwallströmung vorliegt, sind die Schwallstromgrenzen und -dauer zu hoch oder zu niedrig gesetzt. Der obere Grenzwert ist auf 5,0 g/cm³ und der untere auf 0,0 g/cm³ voreingestellt. Das Herabsetzen der oberen Grenze oder Hochsetzen der unteren Grenze macht die Auswerteelektronik sensibler auf Änderungen der Dichte. Wenn Sie gelegentliche Schwallströmung in Ihrem Prozess erwarten, kann es sein, dass Sie die Schwallstromdauer erhöhen müssen. Eine längere Schwallstromdauer macht die Auswerteelektronik unempfindlicher gegenüber Schwallströmung.

6.12 Wiederherstellen einer funktionierenden Konfiguration

Manchmal kann es einfacher sein, mit einer bekannten funktionierenden Konfiguration zu starten als mit der Störungsanalyse und –beseitigung der existierenden Konfiguration. Hierzu können Sie:

- Eine mit ProLink II gespeicherte Konfigurationsdatei wiederherstellen, falls eine solche verfügbar ist. In ProLink II, wählen Sie **File > Send to Xmtr from File**.
- Werkskonfiguration wiederherstellen (ProLink II v2.6 oder neuere Version erforderlich, Auswerteelektronik muss an einen Core-Prozessor mit erweiterter Funktionalität angeschlossen sein). Siehe Abbildung 6-1.

Keine dieser Methoden kann die gesamte Konfiguration der Auswerteelektronik wiederherstellen. Zum Beispiel kann keine Methode die Konfiguration der AI, AO und INT Blöcke wiederherstellen. Mit der Option Restore Factory Configuration Option werden auch Dinge wie beispielsweise die Konfiguration des Bedieninterface nicht wiederhergestellt.

Abbildung 6-1 Wiederherstellen der Werkskonfiguration

6.13 Prüfen der Testpunkte

Sie können eine Sensorstörung oder Statusalarme für eine Messbereichsüberschreitung anhand einer Prüfung der Testpunkte des Durchflussmessers diagnostizieren. Zu den *Testpunkten* gehören die linke und rechte Aufnehmerspule, die Antriebsverstärkung und die Messrohrfrequenz.

6.13.1 Abfragen der Testpunkte

Sie können die Testpunkte mit einem Feldbus-Host oder über die ProLink II Software abfragen.

Mit Feldbus Host

Die Testpunkte sind eindeutig bezeichnete Parameter im DIAGNOSTIC Transducer Block:

- Left pickoff voltage
- Right pickoff voltage
- Tube frequency
- Drive Gain: Value

Mit ProLink II

Testpunkte mit ProLink II abfragen:

- 1. Wählen Sie ProLink > Diagnostic Information.
- 2. Notieren Sie die Werte, die Sie im Dialogfeld **Tube Frequency**, Left Pickoff, Right Pickoff Drive Gain finden.

6.13.2 Auswerten der Testpunkte

Verwenden Sie die folgenden Richtlinien, um die Testpunkte auszuwerten:

- Liegt die Antriebsverstärkung bei 100 %, siehe Abschnitt 6.13.3.
- Ist die Antriebsverstärkung instabil, siehe Abschnitt 6.13.4.
- Sind die Werte für die linke oder rechte Aufnehmerspule nicht gleich den Werten in Tabelle 6-4, die auf der Messrohrfrequenz des Sensors basieren, siehe Abschnitt 6.13.5.
- Sind die Werte für die linke und rechte Aufnehmerspule gleich den Werten in Tabelle 6-4, die auf der Messrohrfrequenz des Sensors basieren, setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.

Tabelle 6-4 Sensor – Werte der Aufnehmerspulen

Werte der Aufnehmerspule
3,4 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz
2,7 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz
3,4 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz
3,4 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz
3,4 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz

Sensormodell ⁽¹⁾	Werte der Aufnehmerspule
Sensor Modell F200 (Kompaktgehäuse)	2,0 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz
Sensor Modell F200 (Standardgehäuse)	3,4 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz
Sensor Modell H025, H050, H100	3,4 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz
Sensor Modell H200	2,0 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz
Sensor Modell R025, R050 oder R100	3,4 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz
Sensor Modell R200	2,0 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz
Sensor Micro Motion T-Serie	0,5 mV Spitze-Spitze pro Hz, basierend auf Sensor-Messrohrfrequenz

Tabelle 6-4 Sensor – Werte der Aufnehmerspulen (Fortsetzung)

(1) Ist Ihr Sensor nicht aufgelistet, kontaktieren Sie Micro Motion Kundenservice.

6.13.3 Übermäßige Antriebsverstärkung

Ursachen für eine übermäßige Antriebsverstärkung sowie mögliche Abhilfemaßnahmen sind in Tabelle 6-5 aufgeführt.

Tabelle 6-5 Übermäßige Antriebsverstärkung – Ursachen und Abhilfemaßnahmen

Ursache	Abhilfemaßnahme
Übermäßige Schwallströmung	Schwallströmung eliminieren.
	Sensor-Einbaulage ändern.
Verstopfte Messrohre	Messrohre spülen. Evtl. Austausch des Sensors erforderlich.
Kavitation oder Dampfbildung	Einlaufseitigen oder auslaufseitigen Druck am Sensor erhöhen.
	Wenn sich einlaufseitig vor dem Sensor eine Pumpe befindet, vergrößern Sie den Abstand zwischen Pumpe und Sensor.
Antriebsplatine oder Modul defekt, gebrochene Messrohre oder Sensor im Ungleichgewicht	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
Mechanisches Klemmen am Sensor	Stellen Sie sicher, dass der Sensor frei schwingen kann.
Offene Antriebsspule oder Aufnehmerspule links	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
Durchfluss außerhalb des Bereichs	Stellen Sie sicher, dass der Durchfluss innerhalb der Sensorgrenzen liegt.
Falsche Sensorcharakterisierung	Charakterisierung prüfen. Siehe Abschnitt 3.3.
6.13.4 Sprunghafte Antriebsverstärkung

Ursachen für eine sprunghafte Antriebsverstärkung sowie Abhilfemaßnahmen sind in Tabelle 6-6 aufgeführt.

Tabelle 6-6 Sprunghafte Antriebsverstärkung – Ursachen und Abhilfemaßnahmen

Ursache	Abhilfemaßnahme
Falsche K1-Charakterisierungskonstante für den Sensor	K1-Charakterisierungskonstante neu eingeben. Siehe Abschnitt 3.3.
Polarität der Aufnehmer- oder Antriebsspule vertauscht	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.
Schwallströmung	Prüfen Sie, ob die Messrohre mit Prozessmedium gefüllt sind und die Schwallstromgrenzen und -dauer richtig konfiguriert sind. Siehe Abschnitt 6.11.
Fremdkörper in den Messrohren	Messrohre spülen. Evtl. Austausch des Sensors erforderlich.

6.13.5 Niedrige Aufnehmerspannung

Ursachen für eine niedrige Aufnehmerspannung sowie mögliche Abhilfemaßnahmen sind in Tabelle 6-7 aufgeführt.

Tabelle 6-7 Niedrige Aufnehmerspannung – Ursachen und Abhilfemaßnahmen

Ursache	Abhilfemaßnahme
Fehlerhafte Verdrahtung zwischen Sensor und Core-Prozessor	Siehe Betriebsanleitung des Sensors und Installationsanleitung der Auswerteelektronik.
Der Durchfluss liegt außerhalb der Sensorgrenzen	Stellen Sie sicher, dass der Durchfluss innerhalb des Sensor-Messbereichs liegt.
Schwallströmung	Prüfen Sie, ob die Messrohre mit Prozessmedium gefüllt sind und die Schwallstromgrenzen und -dauer richtig konfiguriert sind. Siehe Abschnitt 6.11.
Keine Schwingung der Sensor-Messrohre	Auf verstopfte Messrohre prüfen.
	Stellen Sie sicher, dass der Sensor frei schwingen kann (keine mechanische Verbindungen).
	Verdrahtung prüfen.
	Spulen am Sensor testen. Siehe Abschnitt 6.15.
Prozesswerte liegen außerhalb der Sensorgrenzen	Stellen Sie sicher, dass der Durchfluss innerhalb des Sensor-Messbereichs liegt.
Feuchtigkeit in der Sensorelektronik	Beseitigen Sie die Feuchtigkeit in der Sensorelektronik.
Der Sensor ist beschädigt	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.

6.14 Prüfen des Core-Prozessors

Zwei mögliche Vorgehensweisen zur Prüfung des Core-Prozessors:

- Sie können die LED des Core-Prozessors kontrollieren. Der Core-Prozessor verfügt über eine LED, die die verschiedenen Zustände des Durchflussmessers anzeigt.
- Sie können einen Core-Prozessor-Widerstandstest durchführen, um den Core-Prozessor auf Beschädigung zu prüfen.

Für beide Tests müssen Sie auf den Core-Prozessor Zugriff haben.

6.14.1 Zugriff auf den Core-Prozessor

Um Zugriff auf den Core-Prozessor zu erlangen, gehen Sie wie folgt vor.

- 1. Bestimmen Ihrer Installationsart. Siehe Anhang D.
- 2. Wenn Sie eine 4adrige, externe Installation oder einen externen Core-Prozessor mit externer Auswerteelektronik haben, entfernen Sie den Deckel des Core-Prozessors. Der Core-Prozessor ist eigensicher und kann in jeder Umgebung geöffnet werden.
- 3. Wenn Sie eine integrierte Installation haben:
 - a. Lockern Sie die vier Kopfschrauben, mit denen die Auswerteelektronik am Sockel befestigt ist (Abbildung 6-2).
 - b. Drehen Sie die Auswerteelektronik gegen den Uhrzeigersinn, sodass die Kopfschrauben in der entriegelten Position sind.
 - c. Heben Sie die Auswerteelektronik vorsichtig gerade von den Kopfschrauben ab. Gehen Sie vorsichtig vor, um die Verbindungskabel zwischen Auswerteelektronik und Core-Prozessor nicht abzuklemmen oder zu beschädigen.
- 4. Wenn Sie eine 9-adrige externe Installation haben:
 - a. Entfernen Sie den Abschlussdeckel.
 - b. Lockern Sie die drei Befestigungsschrauben der Core-Prozessor-Montageplatte im Core-Prozessor-Gehäuse. Schrauben nicht entfernen. Drehen Sie die Montageplatte so, dass die Schrauben in der entriegelten Position sind.
 - c. Halten Sie die Montageplatte an der Lasche fest und senken Sie sie langsam ab, bis Sie die Oberseite des Core-Prozessors sehen. Achten Sie darauf, dass Sie die Verbindungskabel zwischen Auswerteelektronik und Core-Prozessor nicht abklemmen oder beschädigen.

TB-Referenz

Abbildung 6-2 Komponenten der integrierten Installation

Achten Sie bei der Montage der Komponenten darauf, dass die Kabel nicht gequetscht oder abgerissen werden. Alle O-Ringe einfetten.

6.14.2 Prüfen der Core-Prozessor-LED

Schalten Sie beim Prüfen der LED des Core-Prozessors die Spannungsversorgung der Auswerteelektronik nicht ab. Prüfen der Core-Prozessor LED:

- 1. Legen Sie den Core-Prozessor gemäß der Anweisungen in Abschnitt 6.14.1 frei.
- 2. Prüfen Sie die Core-Prozessor-LED auf die in Tabelle 6-8 (Core-Prozessor mit Standard Funktionalität) oder Tabelle 6-9 (Core-Prozessor mit erweiterter Funktionalität) aufgeführten Bedingungen.

Tabelle 6-8	LED-Verhalten, Durchflussmesser-Zustand und Abhilfemaßnahmen – Core-Prozessor
	mit Standard-Funktionalität

LED-Verhalten	Zustand	Mögliche Abhilfemaßnahme	
1 x Blinken pro Sekunde (AUS 75 %, AN 25 %)	Normalbetrieb	Keine Maßnahme erforderlich.	
1 x Blinken pro Sekunde (AUS 25 %, AN 75 %)	Schwallströmung	Siehe Abschnitt 6.11.	
Dauerleuchten	Nullpunktstellung oder Kalibrierung läuft	Falls die Nullpunktstellung oder die Kalibrierung läuft, muss keine Maßnahme ergriffen werden. Falls keiner dieser Prozesse läuft, kontaktieren Sie den Micro Motion Kundenservice.	
	Core-Prozessor erhält 11,5 bis 5 V	Spannungsversorgung der Auswerteelektronik prüfen. Siehe Abschnitt 6.10.1.	
3 x schnelles Blinken mit anschließender	Sensor nicht erkannt	Verdrahtung zwischen Auswerteelektronik und Sensor prüfen (9-adrige externe Installation oder externer Core-Prozessor mit externer Auswerteelektronik). Siehe Installationsanleitung.	
Pause	Falsche Konfiguration	Charakterisierung prüfen. Siehe Abschnitt 3.3.	
	Abgebrochener Pin zwischen Sensor und Core-Prozessor	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.	

LED-Verhalten	Zustand	Mögliche Abhilfemaßnahme Alarmstatus prüfen.	
4 x Blinken pro Sekunde	Störung		
AUS	Core-Prozessor erhält weniger als	Verdrahtung der Spannungsversorgung zum Core-Prozessor prüfen. Siehe Installationsanleitung.	
	5 V	Wenn die Status-LED leuchtet, wird die Auswerteelektronik mit Spannung versorgt. Spannung über den Klemmen 1 (VDC+) und 2 (VDC–) am Core-Prozessor prüfen. Normaler Anzeigewert beträgt ca. 14 VDC. Wenn der Wert normal ist, kann ein Fehler im Core-Prozessor vorliegen – kontaktieren Sie den Micro Motion Kundenservice. Wenn der Wert 0 ist, kann ein Fehler in der Auswerteelektronik vorliegen – kontaktieren Sie den Micro Motion Kundenservice. Wenn der Wert kleiner als 1 VDC ist, die Verdrahtung der Spannungsversorgung zum Core-Prozessor prüfen. Kabel möglicherweise vertauscht. Siehe Installationsanleitung.	
		Leuchtet die Status LED nicht, bekommt die Auswerteelektronik auch keine Spannung. Spannungsversorgung prüfen. Funktioniert die Spannungsversorgung, so kann die interne Auswerteelektronik, Display oder LED fehlerhaft sein. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.	
	Fehler im Core-Prozessor	Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.	

Tabelle 6-8 LED-Verhalten, Durchflussmesser-Zustand und Abhilfemaßnahmen – Core-Prozessor mit Standard-Funktionalität (Fortsetzung)

Tabelle 6-9 LED-Verhalten, Durchflussmesser-Zustand und Abhilfemaßnahmen – Core-Prozessor mit erweiterter Funktionalität

LED-Verhalten	Zustand	Mögliche Abhilfemaßnahme	
Grün	Normalbetrieb	Keine Maßnahme erforderlich.	
Blinkt gelb	Nullpunktkalibrierung läuft	Wenn die Kalibrierung läuft, muss keine Maßnahme ergriffen werden. Wenn keine Kalibrierung läuft, kontaktieren Sie Micro Motion.	
Gelb	Alarm niedriger Stufe	Alarmstatus prüfen.	
Rot	Alarm hoher Stufe	Alarmstatus prüfen.	
Blinkt rot (80 % AN, 20 % AUS)	Messrohre nicht gefüllt	Ist Alarm A105 (Schwallströmung) aktiv, siehe Abschnitt 6.11.	
		Ist Alarm A033 (Messrohre nicht gefüllt) aktiv, Prozess prüfen. Prüfen, ob Luft in den Messrohren vorhanden ist, die Messrohre nicht gefüllt sind oder sich Fremdkörper oder Ablagerungen in den Messrohren befinden.	
Blinkt rot (50 % AN, 50 % AUS)	Elektronikfehler	Kontaktieren Sie Micro Motion.	

LED-Verhalten	Zustand	Mögliche Abhilfemaßnahme
Blinkt rot (50 % AN, 50 % AUS, überspringt jedes vierte Blinken)	Sensorfehler	Kontaktieren Sie Micro Motion.
AUS	Core-Prozessor erhält weniger als 5 V	 Die Verdrahtung der Spannungsversorgung zum Core-Prozessor prüfen. Siehe Anhang D bzgl. Anschlussschemen. Wenn die Status-LED der Auswerteelektronik leuchtet, wird die Auswerteelektronik auch mit Spannung versorgt. Spannung über den Klemmen 1 (VDC+) und 2 (VDC-) am Core-Prozessor prüfen. Wenn der Wert kleiner ist als 1 VDC, die Verdrahtung der Spannungsversorgung zum Core-Prozessor prüfen. Kabel möglicherweise vertauscht. Siehe Abschnitt 6.10.1. Andernfalls kontaktieren Sie Micro Motion. Wenn die Status-LED der Auswerteelektronik nicht leuchtet, wird die Auswerteelektronik nicht mit Spannung versorgt. Spannungsversorgung prüfen. Siehe Abschnitt 6.10.1. Funktioniert die Spannungsversorgung, so kann ein Fehler in der Auswerteelektronik, im Bedieninterface oder in der LED vorliegen. Kontaktieren Sie Micro Motion.
	Fehler im Core-Prozessor	Kontaktieren Sie Micro Motion.

Tabelle 6-9 LED-Verhalten, Durchflussmesser-Zustand und Abhilfemaßnahmen – Core-Prozessor mit erweiterter Funktionalität (Fortsetzung)

6.14.3 Core-Prozessor-Widerstandstest

Zur Durchführung eines Widerstandstests am Core-Prozessor:

- 1. Klemmen Sie die Spannungsversorgung zur Auswerteelektronik und zum Core-Prozessor ab.
- 2. Legen Sie den Core-Prozessor gemäß der Anweisungen in Abschnitt 6.14.1 frei.
- 3. Messen Sie den Widerstand an den folgenden Anschlussklemmenpaaren:
 - Widerstand an Anschlussklemme 3 und 4 (RS-485A und RS-485B) sollte 4050 kOhm sein.
 - Widerstand an Anschlussklemme 2 und 3 (VDC und RS-485A) sollte 20–25 kOhm sein.
 - Widerstand an Anschlussklemme 2 und 4 (VDC und RS-485B) sollte 20–25 kOhm sein.

Wenn einer der gemessenen Widerstände kleiner als angegeben ist, kann es sein, dass der Core-Prozessor nicht in der Lage ist, mit der Auswerteelektronik oder einem externen Host zu kommunizieren. Setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.

6.15 Prüfen der Sensorspulen und Widerstandsthermometer

Probleme mit den Sensorspulen können die Ursache für verschiedene Alarme sein, von Sensorstörungen bis hin zu diversen Bereichsüberschreitungen. Das Prüfen der Sensorspulen beinhaltet das Überprüfen der Anschlussklemmenpaare und die Prüfung auf Gehäusekurzschlüsse.

6.15.1 Externe Installation mit 9 Leitern oder externer Core-Prozessor mit externer Auswerteelektronik

Falls Sie eine externe Installation mit 9 Leitern oder einen externen Core-Prozessor mit externer Auswerteelektronik haben:

- 1. Schalten Sie die Spannungsversorgung der Auswerteelektronik aus.
- 2. Befindet sich die Auswerteelektronik in einer explosionsgefährdeten Atmosphäre, warten Sie fünf Minuten.
- 3. Entfernen Sie den Gehäusedeckel vom Core-Prozessorgehäuse.
- 4. Ziehen Sie die Anschlussklemmenblöcke von der Klemmenplatine ab.
- 5. Prüfen Sie mit einem digitalen Multimeter die Stromkreise in Tabelle 6-10. Hierzu messen Sie jedes Klemmenpaar der abgezogenen Anschlussklemmenblöcke.

Tabelle 6-10 Stromkreis-Anschlussklemmenpaare

Stromkreis	Test-Anschlussklemmenpaar
Antriebsspule	Braun – rot
Linke Aufnehmerspule (LPO)	Grün – weiß
Rechte Aufnehmerspule (RPO)	Blau – grau
Widerstandsthermometer (RTD)	Gelb – violett
Leiterlängenkompensator (LLC) (alle Sensoren außer CMF400 IS und T-Serie) Kombinierte Widerstandsthermometer (nur T-Serie) Fester Widerstand (nur CMF400 IS)	Gelb – orange

 Es dürfen keine offenen Stromkreise, d. h. unendliche Widerstandsmesswerte auftreten. Die Werte für die linke und rechte Aufnehmerspule sollten gleich oder nahezu gleich sein (± 5 Ohm). Sollten unübliche Werte auftauchen, wiederholen Sie den Spulenmesstest an der Sensor Anschlussdose, um so mögliche Kabelfehler zu eliminieren. An beide Enden des entsprechenden Spulenpaars sollten die Werte gleich sein.

Wenn das Kabel defekt ist, muss es ausgetauscht werden.

7. Lassen Sie die Anschlussklemmenblocks des Core-Prozessors abgeklemmt. Entfernen Sie den Deckel der Anschlussdose am Sensor und prüfen jede Anschlussklemme auf Kurzschluss zum Gehäuse. Hierzu schließen Sie ein Multimeterkabel an die Klemme und eines an das Sensorgehäuse an. Stellen Sie das Multimeter in den höchsten Bereich, da der Widerstandswert jedes Pins unendlich sein sollte. Wird an einem Pin ein Widerstand gemessen, liegt ein Kurzschluss zum Gehäuse vor.

- 8. Prüfen Sie die Anschlusspaare folgendermaßen:
 - Braun gegen alle anderen Anschlussklemmen außer Rot
 - Rot gegen alle anderen Anschlussklemmen außer Braun
 - Grün gegen alle anderen Anschlussklemmen außer Weiß
 - Weiß gegen alle anderen Anschlussklemmen außer Grün
 - Blau gegen alle anderen Anschlussklemmen außer Grau
 - Grau gegen alle anderen Anschlussklemmen außer Blau
 - Orange gegen alle anderen Anschlussklemmen außer Gelb und Violett
 - Gelb gegen alle anderen Anschlussklemmen außer Orange und Violett
 - Violett gegen alle anderen Anschlussklemmen außer Gelb und Orange

Anmerkung: D600 und CMF400 Sensoren mit Zwischenverstärker haben andere Anschlussklemmenpaare. Kontaktieren Sie den Micro Motion Kundenservice zwecks Unterstützung.

Für jedes Paar sollte der Widerstand unendlich sein. Wenn ein Widerstand gemessen wird, liegt ein Kurzschluss zwischen den Anschlüssen vor.

- 9. In Tabelle 6-11 finden Sie mögliche Ursachen und Abhilfemaßnahmen.
- 10. Wenn Sie das Problem nicht lösen können, kontaktieren Sie den Micro Motion Kundenservice.

Anmerkung: Stellen Sie bei der Montage der Durchflussmesser-Komponenten sicher, dass die O-Ringe eingefettet werden.

Tabelle 6-11 Sensor- und Kabelkurzschlüsse zum Gehäuse – Mögliche Ursachen und Abhilfemaßnahmen

Mögliche Ursachen	Abhilfemaßnahme
Feuchtigkeit in der Sensor-Anschlussdose	Stellen Sie sicher, dass die Sensor-Anschlussdose trocken und frei von Korrosion ist.
Flüssigkeit oder Feuchtigkeit im Sensorgehäuse	Kontaktieren Sie Micro Motion.
Interner Kurzschluss der Durchführung (Kabelabdichtung zwischen Sensor und Anschlussdose)	Kontaktieren Sie Micro Motion.
Defektes Kabel	Kabel austauschen.
Falsche Kabelanschlüsse	Kabelanschlüsse in der Sensor-Anschlussdose prüfen. Siehe Micro Motion 9-Wire Flowmeter Cable Preparation und Installationsanleitung oder Sensor-Dokumentation.

6.15.2 Externe Installation mit 4 Leitern oder integrierte Installation

Wenn Sie eine externe Installation mit 4 Leitern oder eine integrierte Installation haben:

- 1. Schalten Sie die Spannungsversorgung der Auswerteelektronik aus.
- 2. Wenn sich die Auswerteelektronik in einer explosionsgefährdeter Atmosphäre befindet, warten Sie fünf Minuten.
- 3. Wenn Sie eine externe Installation mit 4 Leitern haben, entfernen Sie den Gehäusedeckel des Core-Prozessors.

- 4. Wenn Sie eine integrierte Installation haben:
 - a. Lockern Sie die vier Kopfschrauben, mit denen die Auswerteelektronik am Sockel befestigt ist (Abbildung 6-2).
 - b. Drehen Sie die Auswerteelektronik gegen den Uhrzeigersinn, sodass die Kopfschrauben in der entriegelten Position sind.
 - c. Heben Sie die Auswerteelektronik vorsichtig gerade vom Sockel ab.

Anmerkung: Sie können die 4 Leiter zwischen Core-Prozessor und Auswerteelektronik abklemmen oder auch angeschlossen lassen.

- 5. Wenn Sie einen Core-Prozessor mit Standard-Funktionalität haben, lockern Sie die unverlierbare Schraube (2,5 mm) in der Mitte des Core-Prozessors. Heben Sie den Core-Prozessor vorsichtig und gerade vom Sensor abheben. Achten Sie darauf, dass Sie Core-Prozessor beim Abheben nicht verdrehen.
- 6. Wenn Sie einen Core-Prozessor mit erweiterter Funktionalität haben, lockern Sie die zwei unverlierbaren Schrauben (2,5 mm), die den Core-Prozessor im Gehäuse befestigen. Heben Sie den Core-Prozessor vorsichtig aus dem Gehäuse und klemmen anschließend das Sensorkabel von den Pins der Durchführung ab. Achten Sie darauf, dass Sie die Pins der Durchführung nicht beschädigen.

Wenn die Pins des Core-Prozessors (Durchführung) verbogen, abgebrochen oder in irgend einer Weise beschädigt sind, funktioniert der Core-Prozessors nicht.

Um Beschädigungen der Core-Prozessor-Pins (Durchführung) vorzubeugen:

- Achten Sie darauf, dass Sie den Core-Prozessor beim Abheben nicht verdrehen.
- Vergewissern Sie sich beim Aufsetzen des Core-Prozessors (oder Sensorkabels) auf die Pins, dass er mit den Führungspins ausgerichtet ist, und gehen Sie beim Installieren des Core-Prozessors (oder Sensorkabels) vorsichtig vor.
- Verwenden Sie ein digitales Multimeter, um den Widerstand an der rechten und linken Aufnehmerspule zu pr
 üfen. Siehe Abbildung 6-3. Es d
 ürfen keine offenen Stromkreise (d. h. unendliche Widerstandsmesswerte) auftreten. Die Widerstandswerte sollten gleich oder nahezu gleich sein (±5 Ohm).
- Verwenden Sie ein digitales Multimeter, um den Widerstand am das Widerstandsthermometer und am Leiterlängenkompensator zu pr
 üfen. Siehe Abbildung 6-3. Es d
 ürfen keine offenen Stromkreise (d. h. unendliche Widerstandsmesswerte) auftreten.
- 9. Prüfen Sie auf Erdschluss zum Gehäuse. Hierzu messen Sie den Widerstand zwischen jedem Pin und dem Gehäuse. Stellen Sie das Multimeter in den höchsten Bereich, da der Widerstandswert jedes Pins unendlich sein sollte. Wird an einem Pin ein Widerstand gemessen, liegt ein Kurzschluss zum Gehäuse vor.

Liegt ein Kurzschluss zum Gehäuse vor, prüfen Sie auf Feuchtigkeit oder Korrosion. Können Sie die Ursache des Problems nicht ausfindig machen, kontaktieren Sie den Micro Motion Kundenservice.

Störungsanalyse und -beseitigung

- 10. Prüfen Sie auf Kurzschluss zwischen den Anschlussklemmen, indem Sie den Widerstand an den nachfolgenden Anschlussklemmenpaaren messen (siehe Abb. 6-3 und 6-4). In jedem Fall sollte der Widerstand unendlich sein. Wenn ein Widerstand gemessen wird, liegt ein Kurzschluss zwischen den Anschlüssen vor.
 - Braun gegen alle anderen Anschlussklemmen außer Rot
 - Rot gegen alle anderen Anschlussklemmen außer Braun
 - Grün gegen alle anderen Anschlussklemmen außer Weiß
 - Weiss gegen alle anderen Anschlussklemmen außer Grün
 - Blau gegen alle anderen Anschlussklemmen außer Grau
 - Grau gegen alle anderen Anschlussklemmen außer Blau
 - Orange gegen alle anderen Anschlussklemmen außer Gelb und Violett
 - Gelb gegen alle anderen Anschlussklemmen außer Orange und Violett
 - Violett gegen alle anderen Anschlussklemmen außer Gelb und Orange

Anmerkung: D600 und CMF400 Sensoren mit Zwischenverstärker haben andere Anschlussklemmenpaare. Kontaktieren Sie den Micro Motion Kundenservice zwecks Unterstützung.

Haben Sie einen Kurzschluss zwischen den Anschlussklemmen festgestellt, kontaktieren Sie den Micro Motion Kundenservice.

 Leiterlängenkompensator (LLC) für alle Sensoren außer T-Serie, CMF400 IS und F300) Für Sensoren der T-Serie, Funktion als kombinierter Widerstandsthermometer. Der Sensor CMF400 IS und F300 haben einen festen Widerstand.

Anmerkung: Die Pins sind dargestellt mit Blick auf die Durchführung des Sensors.

Neuinstallieren des Core-Prozessors

Wenn Sie den Core-Prozessor ausgebaut haben, bauen Sie diesen gemäß den nachfolgenden Anweisungen wieder ein.

- 1. Wenn Sie einen Core-Prozessor mit Standard-Funktionalität haben:
 - a. Richten Sie die drei Führungspins an der Unterseite des Core-Prozessors mit den Löchern im Boden des Core-Prozessorgehäuses aus.
 - b. Setzen Sie den Core-Prozessor vorsichtig auf die Pins setzen und darauf achten, dass keine Pins verbogen werden.
- 2. Wenn Sie einen Core-Prozessor mit erweiterter Funktionalität haben:
 - a. Befestigen Sie das Sensorkabel an den Pins der Durchführung. Achten Sie darauf, dass keine Pins verbogen oder beschädigt werden.
 - b. Setzen Sie den Core-Prozessor in das Gehäuse.
- 3. Ziehen Sie die unverlierbare Schraube(n) mit einem Drehmoment von 0,7 bis 0,9 Nm (6 bis 8 in-lbs) fest.
- 4. Wenn Sie eine externe Installation mit 4 Leitern haben, nehmen Sie den Gehäusedeckel des Core-Prozessors ab.
- 5. Wenn Sie eine integrierte Installation haben:
 - Setzen Sie die Auswerteelektronik vorsichtig auf den Sockel und stecken die Kopfschrauben in die Schlitze. Achten Sie darauf, dass die Kabel nicht gequetscht oder gezogen werden.

TB-Referenz

Störungsanalyse und -beseitigung

- b. Drehen Sie die Auswerteelektronik im Uhrzeigersinn, sodass die Kopfschrauben in Position sperren.
- c. Ziehen Sie die Kopfschrauben mit einem Drehmoment von 2,3 bis 3,4 Nm (20 bis 30 in-lbs) an.

Anmerkung: Bei der Montage der Durchflussmesser Komponenten fetten Sie all O-Ringe ein.

Störungsanalyse und -beseitigung

Anhang A PlantWeb-Alarme

A.1 Einführung in PlantWeb-Alarme

Intelligente Emerson Process Management Feldgeräte (wie das Micro Motion Modell 2700 mit FOUNDATION Feldbus) verfügen über erweiterte Diagnosefunktionen. PlantWeb-Alarme helfen dem Anwender, diese Diagnoseinformationen zu verwenden, indem sie den Anwender über den Gerätezustand informieren und Unterstützung zur Handhabung dieser Zustände bieten.

Die PlantWeb-Alarme sind in drei Kategorien unterteilt:

- *Hinweis* Ermöglicht die Wartung eines Problems, bevor es den Betrieb beeinträchtigt. Diese Alarme unterstützen das Wartungspersonal bei der Wartungsplanung.
- *Wartung* Zeigt an, wenn eine Störung aufgetreten ist (oder gerade auftritt) und welche Auswirkung diese haben kann.
- Störung Zeigt eine eingetretene Störung an, die das Gerät außer Betrieb setzt.

A.2 Setzen von PlantWeb-Alarmen

Tabelle A-1 beschreibt die Bedingungen, unter denen PlantWeb-Alarme für das Micro Motion Modell 2700 mit FOUNDATION Feldbus ausgelöst werden.

PlantWeb- Alarm	Was der Alarm erkennt	Voreingestellte Alarmkategorie	Entsprechende Parameter (und Voreinstellungen)	Richtlinien für die Einstellung
Density out of range	Die gemessene Dichte hat die für den Sensor definierten Grenzen überschritten.	Störung	D1, D2, K1, K2, FD, DTC, Messrohrfrequenz, Antriebsverstärkung, LPO, RPO, Prozessdichte	Siehe Abschnitt 3.2.1 bezüglich Informationen zur Charakterisierung.
Mass flow out of range	Der gemessene Massendurchfluss hat die für den Sensor definierten Grenzen überschritten.	Störung	Prozessdurchfluss	
Calibration failed	Die vom Anwender ausgeführte Kalibrierung ist fehlgeschlagen.	Störung	Prozessdurchfluss, Prozessdichte, Prozesstemperatur	Siehe Abschnitt 6.5.
Tube not full	Kein Signal von der linken oder rechten Aufnehmerspule.	Störung	Messrohrfrequenz, Antriebsverstärkung, LPO, RPO, Prozessdichte	

Tabelle A-1. Setzen von PlantWeb-Alarmen

PlantWeb- Alarm	Was der Alarm erkennt	Voreingestellte Alarmkategorie	Entsprechende Parameter (und Voreinstellungen)	Richtlinien für die Einstellung
Slug flow	Flüssigkeitsprozess mit Gaseinschlüssen oder Gasprozess mit Kondensation ist der Grund, dass die Dichte die konfigurierten Schwallstromgrenzen überschritten hat.	Wartung	Untere Schwallstromgrenze (0,0), Obere Schwallstromgrenze (5,0), Schwallstromdauer (1,0), Antriebsverstärkung, Prozessdichte	Siehe Abschnitt 4.13 und 6.11 bezüglich weiterer Informationen über die Schwallströmung.
Drive out of range	Die Antriebsspule für die Sensoren hat den optimalen Punkt überschritten.	Wartung	Antriebsverstärkung, LPO, RPO, Prozessdichte	
API: Process variable out of range	Die Prozesstemperatur oder -dichte ist außerhalb der für API definierten Extrapolationsgrenzen.	Wartung	Keine	
Sensor not responding	Der Sensor funktioniert nicht richtig.	Störung	LPO, RPO, Nullpunktwert, Antriebsverstärkung, Messrohrfrequenz	
Sensor temperature out of range	Entweder der Temperaturwert vom Widerstandsthermometer des Sensormessrohrs oder des Sensorgehäuses ist außerhalb der normalen Betriebsgrenzen.	Störung	Prozessleitung-Wider standsthermometer, Sensor-Widerstandsth ermometer, Prozesstemperatur	
Transmitter not characterized	In die Auswerteelektronik wurden nicht die richtigen Kalibrierparameter für Durchfluss oder Dichte vom Sensor-Typenschild oder vom Durchfluss-Kalibrierdate nblatt eingegeben.	Störung	K1, K2, FCF	Siehe Abschnitt 3.3 bezüglich Informationen zur Charakterisierung.
CM: Unable to fit curve data	Die eingegebenen Daten für die Kurvenpassung ergeben einen inakzeptablen Fehler in der Passung.	Störung	KM-Kurvenparameter	Siehe Abschnitt 4.7.
Smart Meter Verification failed	Die intelligente Systemverifizierung ist unerwartet fehlgeschlagen.	Wartung	Keine	
Smart Meter Verification aborted	Die intelligente Systemverifizierung wurde vom Anwender abgebrochen.	Wartung	Keine	

Tabelle A-1. Setzen von PlantWeb-Alarmen (Fortsetzung)

PlantWeb- Alarm	Was der Alarm erkennt	Voreingestellte Alarmkategorie	Entsprechende Parameter (und Voreinstellungen)	Richtlinien für die Einstellung
CM: Extrapolation Alarm	Die Prozesstemperatur oder -dichte liegt außerhalb der anwenderdefinierten Extrapolationsgrenzen.	Wartung	Prozessdichte, Prozesstemperatur	
Calibration in progress	Eine Kalibrierung läuft (Nullpunkt, Dichte, Temperatur oder Systemverifizierung). Läuft eine Systemverifizierung, werden die Ausgänge auf dem zuletzt gemessenen Wert gehalten.	Hinweis		
Sensor simulate active	Sensor-Simulationsmod us ist aktiv.	Hinweis	Keine	
Electronics failure Device	In Core-Prozessor oder Auswerteelektronik wurde ein Fehler EEPROM, RAM, Bootsector oder Real-timer interrupt gesetzt.	Störung	Keine	
Electronics failure ASIC	Auswerteelektronik RAM-Fehler, Manufacturing Block Prüfsummenfehler	Störung	Keine	
Transmitter initializing/war ming up	Die Auswerteelektronik durchläuft ihr Programm zur ersten Inbetriebnahme.	Störung	Keine	
Core processor/trans mitter communication failure	Kommunikationsfehler zwischen Core-Prozessor und Auswerteelektronik.	Störung	Keine	
ECP low power	Der Core-Prozessor mit erweiterter Funktionalität erhält zu wenig Spannung.	Störung	Keine	Siehe Produktdatenblatt der Auswerteelektronik, Anforderungen an die Spannungsversorgung.
Possible data loss	Der Core-Prozessor konnte die Zähler beim letzten Abschalten nicht erfolgreich speichern.	Wartung	Keine	
Electronics failure Hornet	Prozessor neu starten. Wenn das Problem weiterhin besteht, Kontakt mit Micro Motion aufnehmen	Störung	Keine	
NV Memory Failure	Prozessor neu starten. Wenn das Problem weiterhin besteht, Kontakt mit Micro Motion aufnehmen	Störung	Störung	

Tabelle A-1. Setzen von PlantWeb-Alarmen (Fortsetzung)

PlantWeb- Alarm	Was der Alarm erkennt	Voreingestellte Alarmkategorie	Entsprechende Parameter (und Voreinstellungen)	Richtlinien für die Einstellung
Check function	Transducer Block Modus prüfen	Hinweis	Hinweis	
Factory configuration checksum invalid	Die Prüfsumme der Werkskonfigurationsdate n ist fehlgeschlagen. Die Daten sind möglicherweise beschädigt.	Störung	Störung	Wert für Temperatur-Bereichsübersch reitung fehlt.
Factory configuration invalid	Die Werkskonfigurationsdate n wurden geändert. Sie können die aktuelle Konfiguration als Werkskonfiguration speichern	Hinweis	Hinweis	

Tabelle A-1. Setzen von PlantWeb-Alarmen (Fortsetzung)

A.3 Verwenden von PlantWeb-Alarmen

Tabelle A-2 zeigt Informationen, die für die Verwendung der PlantWeb-Alarme mit dem Micro Motion Modell 2700 mit FOUNDATION Feldbus erforderlich sind. Tabelle A-3 zeigt den Status von AI und AO Block Ausgängen bei verschiedenen Kombinationen von Transducer Block Modi und PlantWeb-Alarmen.

PlantWeb- Alarm	Was der Alarm erkennt	Voreinge- stellte Alarmka- tegorie	Auswirkung auf das Gerät	Empfohlene Maßnahme/Hilfe
Density out of range	Die gemessene Dichte hat die für den Sensor definierten Grenzen überschritten.	Störung	Dichtemessung nicht verfügbar.	 Prüfen auf teilweise gefüllte oder verstopfte Messrohre. Prozess prüfen, um sicherzustellen, dass die Dichte richtig ist. Prüfen, ob alle Charakterisierungspara meter richtig sind, speziell die Dichtefaktoren. Dichtekalibrierung durchführen.
Mass flow out of range	Der gemessene Massendurchfluss hat die für den Sensor definierten Grenzen überschritten.	Störung	Massendurchflussmessu ng nicht verfügbar.	 Prozess prüfen, um sicherzustellen, ob der Massendurchfluss richtig ist. Prüfen, ob die Charakterisierungspara meter richtig sind. Nullpunkt des Durchflussmessers kalibrieren.
Calibration failed	Die Kalibrierung durch den Anwender ist fehlgeschlagen.	ierung durch den Störung Gerät evtl. n r ist kalibriert ode lagen. nicht richtig.		 Bei der Nullpunktkalibrierung prüfen, dass kein Durchfluss vorhanden ist. Bei der FD-Kalibrierung prüfen, dass genügend Durchfluss vorhanden ist. Spannungsversorgung der Auswerteelektronik aus-/einschalten, dann erneut versuchen, die Auswerteelektronik zu kalibrieren. Mechanische Störungen eliminieren.
Tube not full	Kein Signal von der linken oder rechten Aufnehmerspule.	Störung	Messungen falsch oder sprunghaft.	Prüfen, ob Luft in den Messrohren vorhanden ist, die Messrohre nicht gefüllt sind oder sich Fremdkörper oder Ablagerungen in den Messrohren befinden.

Tabelle A-2. Verwenden von PlantWeb-Alarmen

PlantWeb- Alarm	Was der Alarm erkennt	Voreinge- stellte Alarmka- tegorie	Auswirkung auf das Gerät	Empfohlene Maßnahme/Hilfe
Slug flow	Flüssigkeitsprozess mit Gaseinschlüssen oder Gasprozess mit Kondensation ist der Grund, dass die Dichte die konfigurierten Schwallstromgrenzen überschritten hat.	Wartung	Messungen können falsch sein. Ist dies vorübergehend oder erwartet, kann es ignoriert werden.	In einem Flüssigkeitsprozess auf Kavitation, Dampfbildung oder Leckage prüfen. In einem Gasprozess prüfen, dass Temperatur und Druck nicht schwanken und keine Kondensation auftritt. Treten Schwallstrombedingungen während eines Batchvorgangs auf, kann es sein, dass die aktuelle Menge nicht dem Sollwert entspricht. Überwachen Sie die Dichte und versuchen, die Probleme mit dem Prozess zu lösen. Treten Schwallstrombedingungen auf, konfigurieren Sie die Schwallstromgrenzen und/oder das Schwallstrom-Timeout neu.
Drive out of range	Die Antriebsspule für die Sensoren hat den optimalen Punkt überschritten.	Die Antriebsspule für die Wartung Durchflussmesser Sensoren hat den optimalen funktioniert normal Punkt überschritten. weiter, aber es kann ein Problem vorliegen.		 Messrohre spülen. Einlaufseitigen oder auslaufseitigen Druck am Sensor erhöhen. Sensor-Einbaulage ändern Ist kein anderer. Alarm aktiv, kann diese Bedingung ignoriert werden.
API: Process variable out of range	Die Prozesstemperatur oder -dichte ist außerhalb der für API definierten Extrapolationsgrenzen.	Wartung	API-Messungen können falsch sein.	API-Konfiguration prüfen.
Sensor not responding	Der Sensor funktioniert nicht richtig.	Störung	Falsche oder unbrauchbare Daten.	 Verdrahtung des Sensors prüfen. Testpunkte prüfen. Messrohre spülen.

Tabelle A-2. Verwenden von PlantWeb-Alarmen (Fortsetzung)

PlantWeb- Alarm	Was der Alarm erkennt	Voreinge- stellte Alarmka- tegorie	Auswirkung auf das Gerät	Empfohlene Maßnahme/Hilfe	
Sensor temperature out of range	Entweder der Temperaturwert vom Widerstandsthermometer des Sensorgehäuses ist außerhalb der normalen Betriebsgrenzen.	Störung	Schlechter Temperaturwert. Dies kann sich ungünstig auf die KM- und API-Variablen auswirken.	 Prüfen, ob die Charakterisierungspara meter richtig sind. Verdrahtung des Sensors prüfen. Möglicherweise liegt eine Unterbrechung oder ein Kurzschluss des Leiterlängenkompensato rs oder eine Unterbrechung oder ein Kurzschluss des Widerstandsthermomete rs im Sensor vor. Eine Unterbrechung oder ein Kurzschluss an der Auswerteelektronik können repariert werden. Bei einer Unterbrechung oder einem Kurzschluss am Sensor muss das Gerät an Micro Motion zurückgesendet werden. Prüfen, ob die Temperatur des Prozessmediums innerhalb der Sensorspezifikationen liegt. 	
Transmitter not characterized	In die Auswerteelektronik wurden nicht die richtigen Kalibrierparameter für Durchfluss oder Dichte vom Sensor-Typenschild oder vom Durchfluss-Kalibrierdatenbla tt eingegeben.	Störung	Messungen können falsch sein.	Charakterisierung prüfen. Speziell die Durchflusskalibrierfaktoren, K1- und K2-Werte prüfen.	
CM: Unable to fit curve data	Die eingegebenen Daten für die Kurvenpassung ergeben einen inakzeptablen Fehler in der Passung.	Störung	Die KM-Kurve ist nicht verwendbar.	Kurvendaten prüfen.	
Meter verification in progress	Die Systemverifizierung läuft.	Störung	Ausgänge werden auf dem zuletzt gemessenen Werten gehalten.	Warten Sie, bis die Systemverifizierung fertig ist.	
CM: Extrapolation Alarm	Die Prozesstemperatur oder -dichte liegt außerhalb der anwenderdefinierten Extrapolationsgrenzen.	Wartung	KM-Variablen können falsch oder unbrauchbar sein.	Erweiterte Dichte-Konfigu- rationsdaten prüfen.	
Calibration in progress	Eine Kalibrierung läuft (Nullpunkt, Dichte, Temperatur oder Systemverifizierung).	Hinweis	Läuft eine Systemverifizierung, werden die Ausgänge auf dem zuletzt gemessenen Wert gehalten. Sonst keine Auswirkung.	Lassen Sie die Kalibrierung beenden.	

Tabelle A-2. Verwenden von PlantWeb-Alarmen (Fortsetzung)

PlantWeb- Alarm	Was der Alarm erkennt	Voreinge- stellte Alarmka- tegorie	Auswirkung auf das Gerät	Empfohlene Maßnahme/Hilfe
Sensor simulate active	Sensor-Simulationsmodus ist aktiv.	Hinweis	Ausgänge sind fixiert.	Sensor-Simulationsmo- dus deaktivieren.
Transmitter initializing/ warming up	Die Auswerteelektronik durchläuft ihr Programm zur ersten Inbetriebnahme.	Störung	Vorübergehend nicht verfügbar. Eine gültige Messung kann erst nach Abschluss des Hochfahrvorgangs berechnet werden.	Lassen Sie die Auswerteelektronik warmlaufen. Der Fehler sollte gelöscht werden, wenn die Auswerteelektronik für den Normalbetrieb bereit ist.
Electronics failure Device	In Core-Prozessor oder Auswerteelektronik wurde ein Fehler EEPROM, RAM, Bootsector oder Real-timer interrupt gesetzt.	Störung	Keine	
Electronics failure Hornet	Prozessor neu starten. Wenn das Problem weiterhin besteht, Kontakt mit Micro Motion aufnehmen.	Störung	Keine	
Core processor/transmi tter communication failure	Kommunikationsfehler zwischen Core-Prozessor und Auswerteelektronik.	Störung	Inoperabel.	Verdrahtung zwischen Auswerteelektronik und Core-Prozessor prüfen. Die Spannungsversorgung der Auswerteelektronik aus-/einschalten. Wenn das Problem nicht behoben werden kann, Micro Motion kontaktieren.
ECP low power	Der Core-Prozessor mit erweiterter Funktionalität erhält zu wenig Spannung.	Störung	Inoperabel.	Spannungsversorgung der Auswerteelektronik prüfen. Verdrahtung zwischen Auswerteelektronik und Core-Prozessor prüfen.
Possible data loss	Der Core-Prozessor konnte die Zähler beim letzten Abschalten nicht erfolgreich speichern.	Wartung	Potenzieller Datenverlust. Der Core-Prozessor muss sich auf die Zähler verlassen, die bis zu 2 Stunden vor der Spannungsunterbrechung im Gerät gespeichert wurden.	Kontaktieren Sie Micro Motion für ein Software-Upgrade der Auswerteelektronik.
Electronics failure Hornet	Prozessor neu starten. Wenn das Problem weiterhin besteht, Kontakt mit Micro Motion aufnehmen	Störung	Keine	
NV Memory Failure	Prüfsumme der Daten des nicht flüchtigen Speichers ungültig. Die Daten des nicht flüchtigen Speichers sind möglicherweise beschädigt.	Störung	Störung	

Tabelle A-2. Verwenden von PlantWeb-Alarmen (Fortsetzung)

PlantWeb- Alarm	Was der Alarm erkennt	Voreinge- stellte Alarmka- tegorie	Auswirkung auf das Gerät	Empfohlene Maßnahme/Hilfe
Check function	Transducer Block Modus prüfen	Hinweis	Hinweis	
Factory configuration checksum invalid	Prozessor neu starten. Wenn das Problem weiterhin besteht, Kontakt mit Micro Motion aufnehmen	Störung		
Factory configuration invalid	Die Werkskonfigurationsdaten wurden geändert. Sie können die aktuelle Konfiguration als Werkskonfiguration speichern	Hinweis		

Tabelle A-2. Verwenden von PlantWeb-Alarmen (Fortsetzung)

Tabelle A-3. AI / AO Block Status

Transducer Block Modus (Aktuell)	Aktive PlantWeb-Alarme	AI / AO Status	AI / AO Unterstatus
OOS	Keine Auswirkung	Schlecht	Gerätestörung
Man	Keine Auswirkung	Schlecht	Nicht spezifisch
Auto	Störung	Schlecht	Nicht spezifisch
Auto	Wartung, keine Störung	Unsicher	Nicht spezifisch
Auto	Nur Hinweis	Gut	Nicht spezifisch
Auto	Keine	Gut	Nicht spezifisch

PlantWeb-Alarme

Betrieb

Anhang B Modell 2700 Transducer Blocks – Referenz

B.1 Übersicht

Die Micro Motion Auswerteelektronik Modell 2700 verfügt über sieben separate Transducer Blocks.

B.1.1 Transducer Block Bezeichnungen

In dieser Betriebsanleitung werden die Transducer Blocks nach ihrer Bezeichnung (Tag) benannt (wie z. B. MEASUREMENT). Feldbus-Hostsysteme, die die Blocknamen-Tags nicht unterstützen, verwenden statt dessen den Namen TRANSDUCER, gefolgt von einem numerischen Code. Die Beziehung zwischen den Transducer Block Tags und dem Code ist in der Tabelle B-1 aufgelistet und zeigt die Tabellennummer, in der die Parameter und Anzeigen in diesem Anhang beschrieben sind.

Tabelle B-1. Transducer Block Tags, Codenamen und Tabellennummern

Тад	Codename	Parameter	Anzeigen
MEASUREMENT TB 1200	Transducer 1200	Tabelle B-2	Tabelle B-3
CALIBRATION TB 1400	Transducer 1400	Tabelle B-4	Tabelle B-5
DIAGNOSTICS TB 1600	Transducer 1600	Tabelle B-6	Tabelle B-7
DEVICE INFORMATION TB 1800	Transducer 1800	Tabelle B-8	Tabelle B-9
LOCAL DISPLAY TB 2000	Transducer 2000	Tabelle B-10	Tabelle B-11
API TB 2200	Transducer 2200	Tabelle B-12	Tabelle B-13
ENHANCED DENSITY TB 2400	Transducer 2400	Tabelle B-14	Tabelle B-15

B.2 MEASUREMENT Transducer Block Parameter

Nachfolgend finden Sie die Parameter (Tabelle B-2) und Anzeigen (Tabelle B-3) für den MEASUREMENT Transducer Block.

Tabelle B-2. MEASUREMENT Transducer Block Parameter

OD-Index	Parameter-Mnemonik	Definition	Meldungs- typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriffsmodus	Liste der Werte
	Standard-FF-Parameter		•	•							L
0	BLOCK_STRUCTURE	Anfang des Transducer Blocks	VARIABLE	DS_64(5)	keine Angabe	S		keine Angabe		R/W (OOS oder Auto)	keine Angabe
1	ST_REV	Der Revisionsstand der Festdaten des zugehö- rigen Function Blocks. Inkrementiert bei jeder Änderung des Festdatenspeichers.	VARIABLE	Unsigned16 (2)	keine Angabe	S		0		R	keine Angabe
2	TAG_DESC	Die Anwenderbesch- reibung für die gewünschte An- wendung des Blocks.	STRING	OCTET STRING (32)	keine Angabe	S	JA	Leerzei chen	"	R/W (OOS oder Auto)	Beliebige 32 Zeichen
3	STRATEGY	Das Feld "Strategy" kann zur Identifi- zierung von Blockgruppen ver- wendet werden. Diese Daten werden nicht durch den Block ge- prüft oder verarbeitet.	VARIABLE	Unsigned16 (2)	keine Angabe	S	JA	0		R/W (OOS oder Auto)	keine Angabe
4	ALERT_KEY	Die Kennnummer der Anlage. Diese Informa- tion wird vom Host zur Sortierung von Alar- men usw. verwendet.	VARIABLE	Unsigned8 (1)	keine Angabe	S	JA	0	1	R/W (OOS oder Auto)	1 bis 255
5	MODE_BLK	Istwert-, Sollwert-, zu- gelassener – und normaler Modus des Blocks.	RECORD	DS-69 (4)	keine Angabe	mix	JA	Auto	1	R/W (OOS oder Auto)	Siehe Abschnitt 2/6 von FF-891
6	BLOCK_ERR	Dieser Parameter zeigt den Status der Stö- rung entsprechend der Hardware- oder Soft- ware-Komponenten des jeweiligen Blocks.	STRING	BIT STRING (2)	keine Angabe	D/20		-		R	Siehe Abschnitt 4.8 von FF-903
7	XD_ERROR	Wird verwendet für alle Konfigurations-, Hard- ware-, Verdrahtungs- oder Systemfehler im Block.	VARIABLE	Unsigned8 (1)	keine Angabe	D		-		R	18 = Process Error 19 = Configuration Error 20 = Electronics Failure 21 = Sensor Failure
	Prozessvariablen-Daten										
8	MFLOW	Massendurchfluss	VARIABLE	DS-65 (5)	R-0247- 0248	D/20		0		R	keine Angabe
9	MFLOW_UNITS	Standard- oder Spezial-Mas- sendurchflusseinheit	ENUM	Unsigned16 (2)	R-0039	S	JA	g/s	1318	R/W (OOS)	1318 = g/s 1319 = g/min 1320 = g/hr 1322 = kg/s 1323 = kg/min 1324 = kg/hr 1325 = kg/day 1327 = t/min 1328 = t/h 1329 = t/d 1330 = lb/s 1331 = lb/min 1332 = lb/hr 1335 = Ston/hr 1335 = Ston/hr 1336 = Ston/hr 1337 = Ston/day 1340 = Lton/hr 1341 = Lton/day 253 = Special units

Tabelle B-2. MEASUREMENT Transducer Block Parameter (Fortsetzung)

OD-Index	Parameter-Mnemonik	Definition	Meldungs- typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriffsmodus	Liste der Werte
10	MFLOW_SPECIAL_UN IT_BASE	Basis-Masseneinheit	ENUM	Unsigned16 (2)	R-132	S	JA	g	1089	R/W (OOS)	1089 = Grams 1088 = Kilograms 1092 = Metric Tons 1094 = Pounds 1095 = Short tons 1096 = long tons
11	MFLOW_SPECIAL_UN IT_TIME	Basis-Zeiteinheit für die Spezial-Masseneinheit	ENUM	Unsigned16 (2)	R-133	S	JA	i	1054	R/W (OOS)	1058 = Minutes 1054 = Seconds 1059 = Hours 1060 = Days
12	MFLOW_SPECIAL_UN IT_CONV	Spezial-Masseneinheit – Umrechnungsfaktor	VARIABLE	FLOAT (4)	R-237- 238	S	JA	1	1,0	R/W (OOS)	keine Angabe
13	MFLOW_SPECIAL_UN IT_STR	Spezial-Mas- sendurchflusseinheit – String	STRING	VISIBLE STRING (8)	R-52- 55	S	JA	KEINE R	KEINE R	R/W (OOS)	Beliebige 8 Zeichen
14	TEMPERATURE	Temperatur	VARIABLE	DS-65 (5)	R-0251- 0252	D/20		-		R	keine Angabe
15	TEMPERATURE_ UNITS	Temperatureinheit	ENUM	Unsigned16 (2)	R-0041	S	JA	C°	1001	R/W (OOS)	1000 = K 1001 = Deg C 1002 = Deg F 1003 = Deg R
16	DENSITY	Dichte	VARIABLE	DS-65 (5)	R-0249- 0250	D/20		-		R	keine Angabe
17	DENSITY_UNITS	Dichteeinheit	ENUM	Unsigned16 (2)	R-0040	S	JA	g/cm ³	1100	R/W (OOS)	1097 = kg/m3 1100 = g/cm3 1103 = kg/l 1104 = g/ml 1105 = g/l 1106 = lb/in3 1107 = lb/ft3 1108 = lb/gal 1109 = Ston/yd3 1113 = DegAPl 1114 = SGU
18	VOL_FLOW	Volumendurchfluss	VARIABLE	DS-65 (5)	R-0253- 0254	D/20		-		R	keine Angabe

OD-Index	Parameter-Mnemonik	Definition	Meldungs- typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriffsmodus	Liste der Werte
19	VOLUME_FLOW_ UNITS	Standard- oder Spezial-Vo- lumendurchflusseinheit	ENUM	Unsigned16 (2)	R-0042	S	JA	l/s	1351	R/W (OOS)	1347 = m3/s 1348 = m3/min 1349 = m3/hr 1350 = m3/day 1351 = L/s 1352 = L/min 1353 = L/hr 1355 = MI/day 1356 = CFS 1357 = CFM 1358 = CFH 1359 = ft3/day / Standard cubic ft. per day 1362 = gal/s 1363 = GPM 1364 = gal/hour 1365 = gal/day 1366 = Mgal/day 1366 = Mgal/day 1368 = ImpGal/s 1368 = ImpGal/hr 1371 = bbl/s 1372 = bbl/min 1373 = bbl/hr 1373 = bbl/hr 1373 = bbl/hr 1373 = bbl/hr 1373 = bbl/hr 1373 = bbl/hr 1373 = bbl/hr 1374 = bbl/day 1631 = barrel (US Beer) per day 1632 = barrel (US Beer) per hour 1633 = barrel (US Beer) per Second 253 = Special units
20	VOL_SPECIAL_UNIT_ BASE	Basis-Volumeneinheit	ENUM	Unsigned16 (2)	R-133	S	JA	1	1038	R/W (OOS)	1048 = Gallons 1038 = Liters 1049 = Imperial Gallons 1043 = Cubic Feet 1034 = Cubic Meters 1051 = Barrels
21	VOL _SPECIAL_UNIT_TIME	Base time unit for special volume unit	ENUM	Unsigned16 (2)	R-134	S	JA	i	1054	R/W (OOS)	1058 = Minutes 1054 = Seconds 1059 = Hours 1060 = Days
22	VOL _SPECIAL_UNIT_CON V	Spezial-Vo- lumeneinheit – Umrechnungsfaktor	VARIABLE	FLOAT (4)	R-239- 240	S	JA	1	1,0	R/W (OOS)	keine Angabe
23	VOL _SPECIAL_UNIT_STR	Spezial-Vo- Iumeneinheit – String	STRING	VISIBLE STRING (8)	R-60- 63	S	JA	KEINE R	KEINE R	R/W (OOS)	Beliebige 8 Zeichen
24	MASS_TOT_INV_SPE CIAL_STR	Spezialeinheiten für Massen-Summenzäh- ler und –Gesamtzähler – String	STRING	VISIBLE STRING (8)	R-56- 59	S	JA	KEINE R	KEINE R	R/W (OOS)	Beliebige 4 Zeichen
25	VOLUME_TOT_INV_ SPECIAL_ STR	Spezialeinheiten für Volumen-Summenzäh- ler und -Gesamtzähler – String	STRING	VISIBLE STRING (8)	R-64- 67	S	JA	KEINE R	KEINE R	R/W (OOS)	Beliebige 4 Zeichen
26	FLOW_DAMPING	Durchfluss (Masse und Volumen) interne Dämpfung (Sekunden)	VARIABLE	FLOAT (4)	R-189- 190	S	JA	0,8	0,8	R/W (OOS)	keine Angabe
27	TEMPERATURE_DAM PING	Temperatur interne Dämpfung (Sekunden)	VARIABLE	FLOAT (4)	R-191- 192	S	JA	4,8	4,8	R/W (OOS)	keine Angabe

Tabelle B-2.	MEASUREMENT	Transducer Block	Parameter	(Fortsetzung)
--------------	-------------	-------------------------	-----------	---------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs- typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriffsmodus	Liste der Werte
28	DENSITY_DAMPING	Dichte interne Dämpfung (Sekunden)	VARIABLE	FLOAT (4)	R 193- 194	S	JA	1,6	1,6	R/W (OOS)	keine Angabe
29	MFLOW_M_FACTOR	Massendurchflussfak- tor	VARIABLE	FLOAT (4)	R-279- 0280	S	JA	1,0	1,0	R/W (OOS)	keine Angabe
30	DENSITY_M_FACTOR	Dichtefaktor	VARIABLE	FLOAT (4)	R-283- 284	S	JA	1,0	1,0	R/W (OOS)	keine Angabe
31	VOL_M_FACTOR	Volumendurchflussfak- tor	VARIABLE	FLOAT (4)	R-281- 282	S	JA	1,0	1,0	R/W (OOS)	keine Angabe
32	MASS_LOW_CUT	Mas- sendurchfluss-Schleich mengenabschaltung der internen Summenzähler	VARIABLE	FLOAT (4)	R-195- 196	S	JA	0,0	0,0	R/W (OOS)	keine Angabe
33	VOLUME_FLOW_LOW _ CUTOFF	Vo- lumendurchfluss-Schlei chmengenabschaltung der internen Summenzähler	VARIABLE	FLOAT (4)	R-197- 198	S	JA	0,0	0,0	R/W (OOS)	keine Angabe
34	DENSITY_LOW_CUTO FF	Dich- te-Schleichmengenabs chaltung der internen Summenzähler	VARIABLE	FLOAT (4)	R-149- 150	S	JA	0,2	0,2	R/W (OOS)	keine Angabe
35	FLOW_DIRECTION	Durchflussrichtung	ENUM	Unsigned16 (2)	R-0017	S	JA	0	0	R/W (belie big)	0 = Forward Only 1 = Reverse Only 2 = Bi-Directional 3 = Absolute Value 4 = Negate/Forward Only 5 = Negate/Bi-Dir
36	HIGH_MASS_LIMIT	Obere Mas- sendurchflussgrenze des Sensors	VARIABLE	FLOAT (4)	R-165- 166	S		Be- rechn		R	keine Angabe
37	HIGH_TEMP_LIMIT	Obere Temperaturg- renze des Sensors	VARIABLE	FLOAT (4)	R-167- 168	S		Be- rechn		R	keine Angabe
38	HIGH_DENSITY_LIMIT	Obere Dichtegrenze des Sensors (g/cm3)	VARIABLE	FLOAT (4)	R-169- 170	S		Be- rechn		R	keine Angabe
39	HIGH_VOLUME_LIMIT	Obere Vo- lumendurchflussgrenze des Sensors	VARIABLE	FLOAT (4)	R-171- 172	S		Be- rechn		R	keine Angabe
40	LOW_MASS_LIMIT	Untere Mas- sendurchflussgrenze des Sensors	VARIABLE	FLOAT (4)	R-173- 174	S		Be- rechn		R	keine Angabe
41	LOW_TEMP_LIMIT	Untere Temperaturg- renze des Sensors	VARIABLE	FLOAT (4)	R-175- 176	S		Be- rechn		R	keine Angabe
42	LOW_DENSITY_LIMIT	Untere Dichtegrenze des Sensors (g/cm3)	VARIABLE	FLOAT (4)	R-177- 178	S		Be- rechn		R	keine Angabe
43	LOW_VOLUME_LIMIT	Untere Vo- lumendurchflussgrenze des Sensors	VARIABLE	FLOAT (4)	R-179- 180	S		Be- rechn		R	keine Angabe

							-		-		
OD-Index	Parameter-Mnemonik	Definition	Meldungs- typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriffsmodus	Liste der Werte
	Summenzähler										
44	INTEGRATOR_FB_CO NFIG	Konfiguration des In- tegrator Function Blocks	ENUM	Unsigned16 (2)	R-1511	S	JA	0	0	R/W (belie big)	0 = Standard 1 = Internal Mass Total 2 = Internal Vol Total 3 = Internal Vol Inv. 4 = Internal Vol Inv. 5 = Int Gas Vol Tot 6 = Int Gas Vol Inv 7 = Int API Vol Tot 8 = Int API Vol Tot 8 = Int API Vol Inv 9 = Int ED Std Vol Tot 10= Int ED Std Vol Inv. 11= Int ED Net Mass Inv 13= Int ED Net Vol Tot 14= Int ED Net Vol Inv.
45	START_STOP_TOTAL	Start/Stopp aller Zähler	VARIABLE	DS-66 (2)	C-2	-	JA	1	0	R/W (belie big)	Wert ist Teil von DS-66 0 = Stop Totals 1 = Start Totals
46	RESET_TOTALS	Alle Summenzähler zurücksetzen	VARIABLE	DS-66 (2)	C-3	-	JA	0	0	R/W (belie big)	Wert ist Teil von DS-66 1 = Reset
47	RESET_INVENTORIE S	Alle Gesamtzähler zurücksetzen	METHODE	Unsigned16 (2)	C-4	-	JA	0	0	R/W (belie big)	1 = Reset
48	RESET_MASS_TOTAL	Massenzähler zurücksetzen	VARIABLE	DS-66 (2)	C-56	-	JA	0	0	R/W (belie big)	Wert ist Teil von DS-66 1 = Reset
49	RESET_VOLUME_ TOTAL	Volumenzähler zurücksetzen	VARIABLE	DS-66 (2)	C-57	-	JA	0	0	R/W (belie big)	Wert ist Teil von DS-66 1 = Reset
50	MASS_TOTAL	Massenzähler	VARIABLE	DS-65 (5)	R-0259- 0260	D/20		-		R	keine Angabe
51	VOLUME_TOTAL	Volumenzähler	VARIABLE	DS-65 (5)	R-0261- 0262	D/20		-		R	keine Angabe
52	MASS_INVENTORY	Massen-Gesamtzähler	VARIABLE	DS-65 (5)	R-0263- 0264	D/20		-		R	keine Angabe
53	VOLUME_INVENTORY	Volumen-Gesamtzäh- ler	VARIABLE	DS-65 (5)	R-0265- 0266	D/20		-		R	keine Angabe
54	MASS_TOT_INV_ UNITS	Standard- oder Spezi- aleinheit der Massen-Summenzäh- ler und -Gesamtzähler	ENUM	Unsigned16 (2)	R-0045	S		g		R	1088 = Kg 1089 = g 1092 = metric tons 1094 = lbs 1095 = short tons 1096 = long tons 253 = Special units
55	VOLUME_TOT_INV_ UNITS	Standard- oder Spezi- aleinheit der Volumen-Summenzäh- ler und -Gesamtzähler	ENUM	Unsigned16 (2)	R-0046	S		11		R	1034 = m3 1036 = cm3 1038 = l 1043 = ft3 1048 = gal 1049 = ImpGal 1051 = bbl 253 = Special units.

Tabelle B-2. MEASUREMENT Transducer Block Parameter (Fortsetzung)

OD-Index	Parameter-Mnemonik	Definition	Meldungs- typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriffsmodus	Liste der Werte
	Gas-Prozessvariablen				<u>.</u>				<u>.</u>	<u>.</u>	
56	GSV_Gas_Dens	Gasdichte zur Berech- nung des Gas-Referenzvo- lumens und der Summenzähler	VARIABLE	FLOAT (4)	R-0453 -0454	S	JA	0,00120 5	0,0012 05	R/W (OOS)	keine Angabe
57	GSV_Vol_Flow	Gas-Referenzvo- lumendurchfluss (nicht bei aktivierter API oder KM verfügbar)	VARIABLE	DS-65 (5)	R-0455 -0456	D/20		-		R	keine Angabe
58	GSV_Vol_Tot	Gas-Referenzvolumen- zähler (nicht bei aktivierter API oder KM verfügbar)	VARIABLE	DS-65 (5)	R-0457 -0458	D/20		-		R	keine Angabe
59	GSV_Vol_Inv	Gas-Referenzvo- lumen-Gesamtzähler (nicht bei aktivierter API oder KM verfügbar)	VARIABLE	DS-65 (5)	R-0459 -0460	D/20		_		R	keine Angabe
60	SNS_EnableGSV	Gas-Standardvo- lumendurchfluss und -Summenzähler Aktivieren/Deaktivieren	ENUM	Unsigned16 (2)	C-78	S	JA	0	0	R/W (OOS)	0 = disabled (liquid) 1 = enabled (gas)
61	SNS_GSV_FlowUnits	Gas-Standardvo- lumendurchfluss – Messeinheiten	ENUM	Unsigned16 (2)	R-2601	S	JA	SCFM	1360	R/W (OOS)	1356 = SCFS $1359 = SCFD$ $1360 = SCFM$ $1361 = SCFH$ $1522 = Nm3/s$ $1523 = Nm3/min$ $1524 = Nm3/h$ $1525 = Nm3/d$ $1527 = Sm3/s$ $1528 = Sm3/m$ $1529 = Sm3/h$ $1530 = Sm3/d$ $1532 = NL/s$ $1533 = NL/m$ $1534 = NL/h$ $1535 = NL/d$ $1537 = SL/s$ $1538 = SL/m$ $1539 = SL/h$ $1540 = SL/d$ $253 = Special$ units.
62	SNS_GSV_TotalUnits	Gas-Standardvo- lumen-Summenzähler und -Gesamtzähler – Messeinheiten	ENUM	Unsigned16 (2)	R-2602	S		SCF		R	1053 = SCF 1521 = Nm3 1526 = Sm3 1531 = NL 1536 = SL 253 = Special units

Tabelle B-2.	MEASUREMENT	Transducer Block	Parameter	(Fortsetzung)
--------------	-------------	-------------------------	-----------	---------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs- typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriffsmodus	Liste der Werte
63	SNS_GSVflowBaseUnit	Basiseinheit für Gas-Standardvolumen	ENUM	Unsigned16 (2)	R-2603	S	JA	SCF		R/W (OOS)	1521 = Normal cubic meter 1531 = Normal liter 1053 = Standard cubic ft 1536 = Standard liter 1526 = Standard cu meter
64	SNS_GSVflowBaseTim e	Basis-Zeiteinheit für die Spezialgas-Standard- volumeneinheit	ENUM	Unsigned16 (2)	R-2604	S	JA	min	1058	R/W (OOS)	1058 = Minutes 1054 = Seconds 1059 = Hours 1060 = Days
65	SNS_GSVflowFactor	Spezialgas-Standard- volumeneinheit – Umrechnungsfaktor	VARIABLE	FLOAT (4)	R-2605- 2606	S	JA	1	1,0	R/W (OOS)	keine Angabe
66	SNS_GSVflowText	Spezialgas-Standard- volumeneinheit – String	STRING	VISIBLE STRING (8)	R-2607- 2610	S	JA	KEI- NER	KEINE R	R/W (OOS)	Beliebige 8 Zeichen
67	SNS_GSVtotText	Messeinheiten für Spe- zialgas-Standardvolum en-Summenzähler und -Gesamtzähler – String	STRING	VISIBLE STRING (8)	R-2611- 2614	S	JA	KEI- NER	KEINE R	R/W (OOS)	Beliebige 4 Zeichen
68	SNS_GSV_FlowCutoff	Gas-Standardvo- lumen-Schleichmenge nabschaltung	VARIABLE	FLOAT (4)	R-461- 462	S	JA	-	0	R/W (OOS)	Muss sein >=0.0
69	SNS_ResetGSVolTotal	Gas-Standardvolumen- zähler zurücksetzen	VARIABLE	DS-66 (2)	C-63	SS	JA	-	0	R/W (belie big)	Wert ist Teil von DS-66 1 = Reset
70	SNS_ResetAPIGSVInv	Gas-Standardvo- lumen-Gesamtzähler zurücksetzen	Methode	Unsigned16 (2)	C-194	S	JA	_	0	R/W (belie big)	1 = Reset
	Weitere Ergänzungen in	4.0									
71	SNS_ResetMass- Inventory	Massen-Gesamtzähler zurücksetzen	Methode	Unsigned16 (2)	C-192	S	JA	0	0	R/W (belie big)	1 = Reset
72	SNS_ResetVolume- Inventory	Volumen-Gesamtzäh- ler zurücksetzen	Methode	Unsigned16 (2)	C-193	S	JA	0	0	R/W (belie big)	1 = Reset
	Ergänzungen in v7.0										
73	SNS_ActualFlow Direction	Gibt an, ob der Durchfluss vorwärts oder rückwärts erfolgt	VARIABLE	DS-66 (2)	R422/B it #4	-		0		R	Wert ist Teil von DS-66 0 = Forward or Zero Flow 1 = Reverse Flow

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
	Standard-FF-Parameter				
0	BLOCK_STRUCTURE				
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	XD_ERROR	1		1	
	Prozessvariablen-Daten				
8	MFLOW	5		5	
9	MFLOW_UNITS		2		
10	MFLOW_SPECIAL_UNIT_BASE				2
11	MFLOW_SPECIAL_UNIT_TIME				2
12	MFLOW_SPECIAL_UNIT_CONV				4
13	MFLOW_SPECIAL_UNIT_STR				8
14	TEMPERATURE	5		5	
15	TEMPERATURE_UNITS		2		
16	DENSITY	5		5	
17	DENSITY_UNITS		2		
18	VOL_FLOW	5		5	
19	VOL_FLOW_UNITS		2		
20	VOL_SPECIAL_UNIT_BASE				2
21	VOL_SPECIAL_UNIT_TIME				2
22	VOL_SPECIAL_UNIT_CONV				4
23	VOL_SPECIAL_UNIT_STR				8
24	MASS_TOT_INV_SPECIAL_ STR				8
25	VOLUME_TOT_INV_ SPECIAL_ STR				8
26	FLOW_DAMPING		4		
27	TEMPERATURE_DAMPING		4		
28	DENSITY_DAMPING		4		
29	MFLOW_M_FACTOR		4		
30	DENSITY_M_FACTOR		4		
31	VOL M FACTOR		4		
32	MASS LOW CUT		4		
33	VOLUME LOW CUT		4		
34	DENSITY LOW CUT		4		
35	FLOW DIRECTION		2		
36	HIGH MASS LIMIT		4		
37	HIGH_TEMP_LIMIT		4		
38	HIGH_DENSITY_LIMIT		4		
39	HIGH_VOLUME_LIMIT		4		
40	LOW MASS LIMIT		4		
41	LOW TEMP LIMIT		4		
42	LOW DENSITY LIMIT		4		
43	LOW_VOLUME_LIMIT		4		

Tabelle B-3. MEASUR	EMENT Transduce	Block Anzeigen
---------------------	-----------------	----------------

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
	Summenzähler				
44	INTEGRATOR_FB_CONFIG		2		
45	START_STOP_TOTALS		2		
46	RESET_TOTALS		2		
47	RESET_INVENTORIES		2		
48	RESET_MASS_TOTAL		2		
49	RESET_VOLUME_TOTAL		2		
50	MASS_TOTAL	5		5	
51	VOLUME_TOTAL	5		5	
52	MASS_INVENTORY	5		5	
53	VOLUME_INVENTORY	5		5	
54	MASS_TOT_INV_UNITS		2		
55	VOLUME_TOT_INV_UNITS		2		
	Gas-Prozessvariablen		•		
56	GSV_Gas_Dens		4		
57	GSV_Vol_Flow	5		5	
58	GSV_Vol_Tot	5		5	
59	GSV_Vol_Inv	5		5	
60	SNS_EnableGSV				2
61	SNS_GSV_FlowUnits				2
62	SNS_GSV_TotalUnits				2
63	SNS_GSVflowBaseUnit				2
64	SNS_GSVflowBaseTime				2
65	SNS_GSVflowFactor				4
66	SNS_GSVflowText				8
67	SNS_GSVtotText				8
68	SNS_GSV_FlowCutoff				2
69	SNS_ResetGSVolTotal		2		
70	SNS_ResetAPIGSVInv		2		
71	SNS_ResetMassInventory		2		
72	SNS_ResetVolumeInventory		2		
73	SNS_ActualFlowDirection		2		
	Summe	64	110	64	85

Tabelle B-3. MEASUREMENT Transducer Block Anzeigen (Fortsetzung)

B.3 CALIBRATION Transducer Block Parameter

Nachfolgend finden Sie die Parameter (Tabelle B-4) und Anzeigen (Tabelle B-5) für den CALIBRATION Transducer Block.

Tabelle B-4. CALIBRATION Transducer Block Parameter

OD-Index	Parameter- Mnemonik	Definition	Meldung- styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
	Standard-FF-Parameter										
0	BLOCK_STRUCTURE	Anfang des Transducer Blocks	VA- RIABLE	DS_64 (5)	keine Angabe	S		keine Angabe		R/W (OOS oder Auto)	keine Angabe
1	ST_REV	Der Revisionsstand der Festdaten des zugehöri- gen Function Blocks. Inkrementiert bei jeder Änderung des Festdatenspeichers.	VA- RIABLE	Unsigned16 (2)	keine Angabe	S		0		R	keine Angabe
2	TAG_DESC	Die Anwenderbesch- reibung für die gewünschte Anwendung des Blocks.	STRING	OCTET STRING (32)	keine Angabe	S	Ja	Leerzei chen	"	R/W (OOS oder Auto)	Beliebige 32 Zeichen
3	STRATEGY	Das Feld "Strategy" kann zur Identifizierung von Blockgruppen verwendet werden. Diese Daten werden nicht durch den Block geprüft oder verarbeitet.	VA- RIABLE	Unsigned16 (2)	keine Angabe	S	Ja	0	0	R/W (OOS oder Auto)	keine Angabe
4	ALERT_KEY	Die Kennnummer der Anlage. Diese Informa- tion wird vom Host zur Sortierung von Alarmen usw. verwendet.	VA- RIABLE	Unsigned8 (1)	keine Angabe	S	Ja	0	1	R/W (OOS oder Auto)	1 bis 255
5	MODE_BLK	Istwert-, Sollwert-, zu- gelassener – und normaler Modus des Blocks.	RECORD	DS-69 (4)	keine Angabe	mix	Ja	Auto	11	R/W (OOS oder Auto)	Siehe Abschnitt 2/6 von FF-891
6	BLOCK_ERR	Dieser Parameter zeigt den Status der Störung entsprechend der Hard- ware- oder Software-Komponenten des jeweiligen Blocks.	STRING	BIT STRING (2)	keine Angabe	D/20		-		R	Siehe Abschnitt 4.8 von FF-903
7	XD_ERROR	Wird verwendet für alle Konfigurations-, Hard- ware-, Verdrahtungs- oder Systemfehler im Block.	VA- RIABLE	Unsigned8 (1)	keine Angabe	D		-		R	18 = Process Error 19 = Configuration Error 20 = Electronics Failure Carriage Return (CR) 21 = Sensor Failure
	Kalibrierung	1	T	1	0			T			
8	MASS_FLOW_GAIN	Durchflusskalibrierfaktor	VA- RIABLE	FLOAT (4)	R-407 – 408	S	Ja	1,0	1,0	R/W (OOS)	keine Angabe
9	MASS_FLOW_T_ COMP	Temperaturkoeffizient für Durchfluss	VA- RIABLE	FLOAT (4)	R-409- 410	S	Ja	5,13	5,12	R/W (OOS)	keine Angabe
10	ZERO_CAL	Nullpunktkalibrierung durchführen	VA- RIABLE	DS-66 (2)	C-0005	-	Ja	0	0	R/W (OOS)	Wert ist Teil von DS-66 0 = Abort Zero Cal 1 = Start Zero Cal
11	ZERO_TIME	Maximale Zeit für die Nullpunktkalibrierung	VA- RIABLE	Unsigned16 (2)	R-0136	S	Ja	20	20	R/W (OOS)	keine Angabe
12	ZERO_STD_DEV	Standardabweichung der Nullpunktkalibrierung	VA- RIABLE	FLOAT (4)	R-0231- 232	S		0		R	keine Angabe

Tabelle B-4.	CALIBRATION Transducer Block Parameter	(Fortsetzung)	
--------------	--	---------------	--

OD-Index	Parameter- Mnemonik	Definition	Meldung- styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
13	ZERO_OFFSET	Aktuelles Offset-Signal des Durchflusses bei Nulldurchfluss in µs	VA- RIABLE	FLOAT (4)	R-233-2 34	S		0		R/W (OOS)	keine Angabe
14	ZERO_FAILED_ VAULE	Nullpunktwert bei fehlge- schlagener Nullpunktkalibrierung	VA- RIABLE	FLOAT (4)	R-0235- 0236	S		0		R	keine Angabe
15	LOW_DENSITY_CAL	Kalibrierung mit niedriger Dichte durchführen	METHO- DE	Unsigned16 (2)	C-0013	-	Ja	0	0	R/W (OOS)	0 = None 1 = Start Cal
16	HIGH_DENSITY_CAL	Kalibrierung mit hoher Dichte durchführen	METHO- DE	Unsigned16 (2)	C-0014	-	Ja	0	0	R/W (OOS)	0x0000 = None 0x0001 = Start Cal
17	FLOWING_DENSITY_ CAL	Kalibrierung der Dichte bei Durchfluss durchführen	METHO- DE	Unsigned16 (2)	C-0018	-	Ja	0	0	R/W (belie big)	0 = None 1 = Start Cal
18	D3_DENSITY_CAL	Kalibrierung des dritten Punktes durchführen	METHO- DE	Unsigned16 (2)	C-0044	-	Ja	0	0	R/W (OOS)	0 = None 1 = Start Cal
19	D4_DENSITY_ CAL	Kalibrierung des vierten Punktes durchführen	METHO- DE	Unsigned16 (2)	C-0045	-	Ja	0	0	R/W (OOS)	0x0000 = None 0x0001 = Start Cal
20	К1	Dichte-Kalibrierkonstan- te 1 (ms)	VA- RIABLE	FLOAT (4)	R-159- 160	S	Ja	1000	7000, 00	R/W (OOS)	keine Angabe
21	K2	Dichte-Kalibrierkonstan- te 2 (ms)	VA- RIABLE	FLOAT (4)	R-161- 162	S	Ja	50000	1100 0,0	R/W (OOS)	keine Angabe
22	FD	Dichte bei Durchfluss – Kalibrierkonstante	VA- RIABLE	FLOAT (4)	R303- 304	S	Ja	0	0	R/W (OOS)	keine Angabe
23	КЗ	Dichte-Kalibrierkonstan- te 3 (μs)	VA- RIABLE	FLOAT (4)	R-0503	S	Ja	0	0	R/W (OOS)	keine Angabe
24	К4	Dichte-Kalibrierkonstan- te 4 (μs)	VA- RIABLE	FLOAT (4)	R-0519	S	Ja	0	0	R/W (OOS)	keine Angabe
25	D1	Dichte 1 (g/cm3)	VA- RIABLE	FLOAT (4)	R-0155- 0156	S	Ja	0	0	R/W (OOS)	keine Angabe
26	D2	Dichte 2 (g/cm3)	VA- RIABLE	FLOAT (4)	R-0157- 0158	S	Ja	1	1,0	R/W (OOS)	keine Angabe
27	FD_VALUE	Dichte bei Durchfluss (g/cm3)	VA- RIABLE	FLOAT (4)	R277- 278	S	Ja	0	0	R/W (belie big)	keine Angabe
28	D3	Dichte 3 (g/cm3)	VA- RIABLE	FLOAT (4)		S	Ja	0	0	R/W (OOS)	keine Angabe
29	D4	Dichte 4 (g/cm3)	VA- RIABLE	FLOAT (4)	R-511	S	Ja	0	0	R/W (OOS)	keine Angabe
30	DENS_T_COEFF	Dichte – Temperaturkoeffizient	VA- RIABLE	FLOAT (4)	R-0163- 164	S	Ja	4,44	4,44	R/W (OOS)	keine Angabe
31	T_FLOW_TG_COEFF	T-Serie: Durchfluss-TG-Koeffizi- ent (FTG)	VA- RIABLE	FLOAT (4)	R-505	S	Ja	0	0	R/W (OOS)	keine Angabe
32	T_FLOW_FQ_COEFF	T-Serie: Durchfluss-FQ-Koeffizi- ent (FFQ)	VA- RIABLE	FLOAT (4)	R-507	S	Ja	0	0	R/W (OOS)	keine Angabe
33	T_DENSITY_TG_COE FF	T-Serie: Dichte-TG-Ko- effizient (DTG)	VA- RIABLE	FLOAT (4)	R-513	S	Ja	0	0	R/W (OOS)	keine Angabe
34	T_DENSITY_FQ_COE FF1	T-Serie: Dichte-FQ-Ko- effizient Nr. 1 (DFQ1)	VA- RIABLE	FLOAT (4)	R-515	S	Ja	0	0	R/W (OOS)	keine Angabe
35	T_DENSITY_FQ_COE FF2	T-Serie: Dichte-FQ-Ko- effizient Nr. 2 (DFQ2)	VA- RIABLE	FLOAT (4)	R-517	S	Ja	0	0	R/W (OOS)	keine Angabe
36	TEMP_LOW_CAL	Temperaturkalibrierung am niedrigen Punkt durchführen (Punkt 1)	METHO- DE	Unsigned16 (2)	C-15	-	Ja	0	0	R/W (OOS)	0 = None 1 = Start Cal

Tabelle B-4.	CALIBRATION Transducer Block Parameter	(Fortsetzung)
--------------	--	---------------

OD-Index	Parameter- Mnemonik	Definition	Meldung- styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
37	TEMP_HIGH_CAL	Temperaturkalibrierung am hohen Punkt durchführen (Punkt 2)	METHO- DE	Unsigned16 (2)	C-16	-	Ja	0	0	R/W (OOS)	0 = None 1 = Start Cal
38	TEMP_VALUE	Temperaturwert für Tem- peraturkalibrierung (in °C)	VA- RIABLE	FLOAT (4)	R-151- 152	S	Ja	0	0	R/W (OOS)	keine Angabe
39	TEMP_OFFSET	Temperaturkalibrierung – Offset	VA- RIABLE	FLOAT (4)	R-0413- 414	S	Ja	0,0	0	R/W (OOS)	keine Angabe
40	TEMP_SLOPE	Temperaturkalibrierung – Steigung	VA- RIABLE	FLOAT (4)	R-0411- 0412	S	Ja	0	1,0	R/W (OOS)	keine Angabe
	Druckkompensation										
41	PRESSURE	Druck	VA- RIABLE	DS-65 (5)	R-0451- 452	D/20		0		R/W (belie big)	keine Angabe
42	PRESSURE_UNITS	Druckeinheit	ENUM	Unsigned16 (2)	R-0044	S	Ja	psi	1141	R/W (OOS)	1148 = inch water @ $68F$ / inch water@ $60F$ 1156 = inch HG @ 0C 1154 = ft water @ 68F 1151 = mm water @ $68F$ 1158 = mm HG @ 0C 1141 = psi 1137 = bar 1138 = millibar 1134 = kg/cm2 1135 = kg/cm2 1135 = kg/cm2 1135 = kg/cm2 1132 = Mega pascals 1133 = kilopascals 1133 = kilopascals 1139 = torr @ $0C$ 1140 = atmospheres 1147 = Inches water @ 4 degrees Celsius 1150 = Millimeters water @ 4 Grad Celsius
43	EN_PRESSURE_CO MP	Druckkompensation aktivieren/deaktivieren	ENUM	Unsigned16 (2)	C-0082	S	Ja	0	0	R/W (OOS)	0 = disabled 1 = enabled
44	PRESSURE_FACTOR _ FLOW	Druckkorrekturfaktor für Durchfluss	VA- RIABLE	FLOAT (4)	R-267- 268	S	Ja	1	1	R/W (OOS)	keine Angabe
45	PRESSURE_FACTOR _ DENS	Druckkorrekturfaktor für Dichte	VA- RIABLE	FLOAT (4)	R-269- 270	S	Ja	1	1	R/W (OOS)	keine Angabe
46	PRESSURE_FLOW_ CAL	Durchflusskalibrierdruck	VA- RIABLE	FLOAT (4)	R-271- 272	S	Ja	1	1	R/W (OOS)	keine Angabe
	Temperaturkompensation										
47	SNS_EnableExtTemp	Temperaturkompensa- tion aktivieren/ deaktivieren	Methode	Unsigned16 (2)	C-0086	S	Ja	0	0	R/W (OOS)	0 = disabled 1 = enabled
48	SNS_ExternalTempInp ut	Externe Temperatur	VA- RIABLE	DS-66 (2)	R421/ Bit #14	-		0		R/W (belie big)	
	Ergänzungen in v7.0										
49	SNS_ZeroInProgress	Gibt an, ob eine Null- punkt-, Dichte- oder Temperaturkalibrierung läuft.	VA- RIABLE	DS-65 (5)		S		0		R	Wert ist Teil von DS-66 0 = Not Running 1 = Calibration Running

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
	Standard-FF-Parameter				
0	BLOCK_STRUCTURE				
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	XD_ERROR	1		1	
	Kalibrierung				
8	MASS_FLOW_GAIN		4		
9	MASS_FLOW_T_COMP		4		
10	ZERO_CAL		2		
11	ZERO_TIME		2		
12	ZERO_STD_DEV			4	
13	ZERO_OFFSET			4	
14	ZERO_FAILED_VAULE			4	
15	LOW_DENSITY_CAL		2		
16	HIGH_DENSITY_CAL		2		
17	FLOWING_DENSITY_CAL		2		
18	D3_DENSITY_CAL		2		
19	D4_DENSITY_CAL		2		
20	K1		4		
21	К2		4		
22	FD		4		
23	КЗ		4		
24	К4		4		
25	D1		4		
26	D2		4		
27	FD_VALUE		4		
28	D3		4		
29	D4		4		
30	DENS_T_COEFF		4		
31	T_FLOW_TG_COEFF		4		
32	T_FLOW_FQ_COEFF		4		
33	T_DENSITY_TG_COEFF		4		
34	T_DENSITY_FQ_COEFF1		4		
35	T_DENSITY_FQ_COEFF2		4		
36	TEMP_LOW_CAL		2		
37	TEMP_HIGH_CAL		2		
38	TEMP_VALUE		4		
39	TEMP_OFFSET			4	
40	TEMP_SLOPE			4	

Tabelle B-5. CALIBRATION Transducer Block Anzeigen
OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
	Druckkompensation				
41	PRESSURE	5		5	
42	PRESSURE_UNITS		2		
43	EN_PRESSURE_COMP				2
44	PRESSURE_FACTOR_FLOW				4
45	PRESSURE_FACTOR_DENS				4
46	PRESSURE_FLOW_CAL				4
	Temperaturkompensation				
47	SNS_EnableExtTemp		2		
48	SNS_ExternalTempInput	5			
	Ergänzungen in v7.0				
49	SNS_ZeroInProgress		2		
	Summe	19	102	34	19

Tabelle B-5. CALIBRATION Transducer Block Anzeigen (Fortsetzung)

B.4 DIAGNOSTICS Transducer Block Parameter

Nachfolgend finden Sie die Parameter (Tabelle B-6) und Anzeigen (Tabelle B-7) für den DIAGNOSTICS Transducer Block.

Tabelle B-6. DIAGNOSTICS Transducer Block Para	neter
--	-------

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
	Standard-FF-Parameter						_				
0	BLOCK_STRUCTURE	Anfang des Transducer Blocks	VARIABL E	DS_64 (5)	keine Angabe	S		keine Angabe		R/W (OOS oder Auto)	keine Angabe
1	ST_REV	Der Revisionsstand der Festdaten des zugehöri- gen Function Blocks. Inkrementiert bei jeder Änderung des Festdatenspeichers.	VARIABL E	Unsigned16 (2)	keine Angabe	S		0		R	keine Angabe
2	TAG_DESC	Die Anwenderbesch- reibung für die gewünschte Anwendung des Blocks.	STRING	OCTET STRING (32)	keine Angabe	S	Ja	Leerzei chen		R/W (OOS oder Auto)	Beliebige 32 Zeichen
3	STRATEGY	Das Feld "Strategy" kann zur Identifizierung von Blockgruppen verwendet werden. Diese Daten werden nicht durch den Block geprüft oder verarbeitet.	VARIABL E	Unsigned16 (2)	keine Angabe	S	Ja	0	0	R/W (OOS oder Auto)	keine Angabe
4	ALERT_KEY	Die Kennnummer der Anlage. Diese Informa- tion wird vom Host zur Sortierung von Alarmen usw. verwendet.	VARIABL E	Unsigned8 (1)	keine Angabe	S	Ja	0	1	R/W (OOS oder Auto)	1 bis 255
5	MODE_BLK	Istwert-, Sollwert-, zu- gelassener – und normaler Modus des Blocks.	RECORD	DS-69 (4)	keine Angabe	mix	Ja	Auto	01	R/W (OOS oder Auto)	Siehe Abschnitt 2/6 von FF-891

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF		Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
6	BLOCK_ERR	Dieser Parameter zeigt den Status der Störung entsprechend der Hard- ware- oder Software-Komponenten des jeweiligen Blocks.	STRING	BIT STRING (2)	keine Angabe	D/20		-			R	Siehe Abschnitt 4.8 von FF-903
7	XD_ERROR	Wird verwendet für alle Konfigurations-, Hard- ware-, Verdrahtungs- oder Systemfehler im Block.	VARIABL E	Unsigned8 (1)	keine Angabe	D		-			R	18 = Process Error 19 = Configuration Error 20 = Electronics Failure 21 = Sensor Failure
	Schwallstrom-Einstellung											
8	SLUG_TIME	Schwalldauer (Sekunden)	VARIABL E	FLOAT (4)	R-0141- 142	S	Ja	0,0		0,0	R/W (belie big)	keine Angabe
9	SLUG_LOW_LIMIT	Dichte untere Grenze (g/cm3)	VARIABL E	FLOAT (4)	R-201- 202	S	Ja	0,0		0,0	R/W (belie big)	keine Angabe
10	SLUG_HIGH_LIMIT	Dichte obere Grenze (g/cm3)	VARIABL E	FLOAT (4)	R-199- 200	S	Ja	5,0		5,0	R/W (belie big)	keine Angabe
	Alarmstatus											
11	ALARM1_STATUS	Statuswort 1	ENUM	BIT STRING (2)	keine Angabe	D/20					R	0x0001 = Transmitter Fail 0x0002 = Sensor Fail 0x0004 = EEPROM error (CP) 0x0008 = RAM error (CP) 0x0010 = Boot Fail (CP) 0x0020 = Uncofig - FloCal 0x0040 = Uncofig - K1 0x0080 = Input 0verrange 0x0100 = Temp. 0verrange 0x0200 = Dens. 0verrange 0x0200 = Dens. 0verrange 0x0200 = RTI Failure 0x0800 = Cal Failed 0x1000 = Xmitter Init 0x2000 = Sns/Xmitter comm fault 0x4000 = Other Failure

Modell 2700 Transducer Blocks - Referenz

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
12	ALARM2_STATUS	Statuswort 2	ENUM	BIT STRING (2)	keine Angabe	D/20				R	0x0001 = Line RTD Over 0x0002 = Messgerät RTD Über 0x0004 = CP Exception 0x0008 = API: Temp OOL 0x0010 = API:Density OOL 0x0010 = API:Density OOL 0x0020 = ED: Unable to fit curve data 0x0040 = ED: Extrapolation alarm 0x0080 = Not Used 0x0100 = EEPROM err (2700) 0x0400 = Factory Config err 0x0800 = Low Power 0x1000= Tube not full 0x2000 = Meter Verify fault 0x4000 = Not Used 0x800 = Nicht verwendet
13	ALARM3_STATUS	Statuswort 3	ENUM	BIT STRING (2)	keine Angabe	D/20		-		R	0x0001 = Drive Overrange 0x0002 = Slug Flow 0x0004 = Cal in Progress 0x0008 = Data Loss Possible 0x0010 = Upgrade Series 2000 0x0020 = Simulation Mode 0x0040 = Meter Verify warn 0x0080 = Warming Up 0x0100 = Power Reset 0x0200 = Reverse Flow 0x0400 = AI/AO Simulation Active 0x0800 = Not Used 0x2000 = Not Used 0x4000 = Not Used 0x4000 = Not Used 0x8000 = Not Used

Modell 2700 Transducer Blocks – Referenz

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
14	ALARM4_STATUS	Statuswort 4	ENUM	BIT STRING (2)		D/20		-		R	$\begin{array}{l} 0x0001 = \text{Cal Fail:}\\ \text{Low}\\ 0x0002 = \text{Cal Fail:}\\ \text{High}\\ 0x0004 = \text{Cal Fail:}\\ \text{Noisy}\\ 0x0008 = \text{Auto}\\ \text{Zero IP}\\ 0x0010 = \text{D1 IP}\\ 0x0020 = \text{D2 IP}\\ 0x0040 = \text{FD IP}\\ 0x0040 = \text{FD IP}\\ 0x0040 = \text{Temp}\\ \text{slope IP}\\ 0x0100 = \text{Temp}\\ \text{slope IP}\\ 0x0200 = \text{D3 IP}\\ 0x0400 = \text{D4 IP}\\ 0x0800 = 1 - \text{Factory}\\ \text{configuration}\\ \text{invalid}\\ 0x1000 = 1 - \text{Factory}\\ \text{configuration}\\ \text{invalid}\\ 0x1000 = 1 - \text{Factory}\\ \text{configuration}\\ \text{invalid}\\ 0x2000 = \text{Core}\\ \text{EEPROM DB}\\ \text{corrupt}\\ 0x4000 = \text{Core}\\ \text{EEPROM Totals}\\ \text{corrupt}\\ 0x8000 = \text{Core}\\ \text{EEPROM}\\ \text{Program corrupt} \end{array}$
15	FAULT_LIMIT	Störgrenzen-Code	ENUM	Unsigned16 (2)	R-124	S		5		R/W (OOS)	$\begin{array}{l} 0 = Upscale \\ 1 = Downscale \\ 2 = Zero \\ 3 = NAN \\ 4 = Flow goes to \\ zero \\ 5 = None \end{array}$
16	LAST_MEASURED_VAL UE_FAULT_TIMEOUT	Letzter Messwert – Störungs-Timeout	VARIABL E	Unsigned16	R-314	S	Ja	0	0	R/W (belie big)	keine Angabe

Modell 2700 Transducer Blocks - Referenz

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
17	ALARM_INDEX	Alarmindex	ENUM	Unsigned16 (2)	keine Angabe	α	Ja	0	1	R/W (belie big)	$\begin{array}{l} 0 = N/A \\ 1 = EEPROM \\ Error (CP) \\ 2 = RAM Error (CP) \\ 3 = Sensor Fail \\ 4 = Temp. \\ Overrange \\ 5 = Input \\ Overrange \\ 6 = Xmitter Not \\ Characterized \\ 7 = N/A \\ 8 = Dens. \\ Overrange \\ 9 = Xmitter Init \\ 10 = Cal Failed \\ 11 = Cal Failed \\ 12 = Cal Failed \\ 13 = Cal Failed \\ 14 = Transmitter \\ Failed \\ 15 = N/A \\ 16 = Line RTD \\ Over \\ 17 = Meter RTD \\ Over \\ 18 = EEPROM \\ Checksum Error \\ 19 = RAM Error \\ 20 = Unconfig K1 \\ 21 = Incorrect \\ Sensor \\ 22 = Core \\ EEPROM DB \\ Corrupt \\ 23 = Core \\ EEPROM Totals \\ Corrupt \\ 24 = Core \\ EEPROM \\ Promram Corrupt \\ 25 = Boot Failed \\ (CP) \\ 26 = Sns/Xmitter \\ comm error \\ 27 = N/A \\ 28 = CP Exception \\ 29-30 = N/A \\ \end{array}$

Modell 2700 Transducer Blocks – Referenz

Tabelle B-6.	DIAGNOSTICS Transducer Block Parameter	(Fortsetzung))
--------------	--	---------------	---

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
	ALARM_INDEX	Alarmindex	ENUM	Unsigned16 (2)	keine Angabe	S	Ja	0	1	R/W (belie big)	31 = Low Power 32 = Meter Verification in Progress 33 = Tube Stoped in process 34 = Meter Verification Failed 35 = Meter Verification Aborted 36-41 = N/A 42 = Drive Overrange 43 = Data Loss Possible 44 = Cal in Progress 45 = Slug Flow 46 = N/A 47 = Power Reset 48-55 = N/A 60 = ED: Unable to fit curve data 56 = API: Temp OOL 57 = API:Density OOL 58-59 = N/A 72 = Simulation Mode 61 = ED: Extrapolation Alarm 62-67 = N/A 68 = Factory Config Invalid 69 = Factory Config Invalid 70 = N/A 71 = Meter Verification In progress
18	ALARM_SEVERITY	Alarmstufe	ENUM	Unsigned16 (2)	R-1238 mit R- 1237 = OD 17	S	Ja	0	2	R/W (OOS)	0 = Ignore 1 = Info 2 = Fault
	Diagnose										
19	DRIVE_GAIN	Antriebsverstärkung	VARIABL E	DS-65 (50)	R-291- 292	D/20		-		R	keine Angabe
20	TUBE_FREQUENCY	Original-Messroh- rperiode	VARIABL	FLOAT (4)	R-285- 286	D/20		-		R	keine Angabe
21		Nullpunktwert (Massendurchfluss)		FLOAT (4)	R-293- 294	D/20		-		R	keine Angabe
22		Aufnehmerspule		FLUAT (4)	R-28/-	D/20		-		R D	keine Angabe
23	GE	Spannung rechte Aufnehmerspule	E	FLUAT (4)	н-289- 290	D/20		-		ĸ	keine Angabe
24	BOARD_TEMPERATUR E	Temperatur Elektronik- platine (°C)	VARIABL E	FLOAT (4)	R-383- 384	D/20		-		R	keine Angabe
25	ELECT_TEMP_MAX	Max. Elektroniktemperatur	VARIABL E	FLOAT (4)	R-463	D/20		-		R	keine Angabe
26	ELECT_TEMP_MIN	Min. Elektroniktemperatur	VARIABL E	FLOAT (4)	R-465	D/20		-		R	keine Angabe
27	ELECT_TEMP_AVG	Durchschn. Elektroniktemperatur	VARIABL E	FLOAT (4)	R-467	D/20		-		R	keine Angabe
28	SENSOR_TEMP_MAX	Max. Sensortemperatur	VARIABL E	FLOAT (4)	R-435- 436	D/20		-		R	keine Angabe

Tabelle B-6.	DIAGNOSTICS	Transducer Block	Parameter	(Fortsetzung)	
--------------	-------------	-------------------------	-----------	---------------	--

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF		Beispielwert	Zugriff	Liste der Werte
29	SENSOR_TEMP_MIN	Min. Sensortemperatur	VARIABL E	FLOAT (4)	R-437- 438	D/20		-		R	keine Angabe
30	SENSOR_TEMP_AVG	Durchschnittliche Sensortemperatur	VARIABL E	FLOAT (4)	R-439- 440	D/20		-		R	keine Angabe
31	RTD_RESISTANCE_CA BLE	Widerstand im Kabel mit 9 Leitern des Wider- standsthermometers (Ohm)	VARIABL E	FLOAT (4)	R-469	D/20		-		R	keine Angabe
32	RTD_RESISTANCE_ METER	Messgerät Widerstands- thermometer-Widerstand (Ohm)	VARIABL E	FLOAT (4)	R-475	D/20		-		R	keine Angabe
33	CP_POWER_CYCLE	Anzahl der Ein-/Ausschal- tungen der Spannungsversorgung des Core-Prozessors	VARIABL E	Unsigned16 (2)	R-497	D		_		R	keine Angabe
	Messsystem-Fingerprint										
34	MFP_SAVE_FACTORY	Werkskalibrierung Mess- system-Fingerprint speichern	ENUM	Unsigned16 (2)	C-39	S	Ja	0	0	R/W (belie big)	0x0000 = no action 0x0001 = save
35	MFP_RESET_STATS	Aktuelle Messsys- tem-Fingerprint-Statistik zurücksetzen	ENUM	Unsigned16 (2)	C-40	S	Ja	0	0	R/W (belie big)	0x0000 = no action 0x0001 = reset
36	EN_MFP	Messsystem-Fingerprin- ting aktivieren/deaktivieren	ENUM	Unsigned16 (2)	C-74	S	Ja	1	1	R/W (belie big)	0x0000 = disabled 0x0001 = enabled
37	MFP_UNITS	Messsystem-Fingerprint in SI- (0) oder englischen (1) Einheiten	ENUM	Unsigned16 (2)	R-625	S	Ja	0	0	R/W (belie big)	0x0000 = SI 0x0001 = English
38	MFP_TV_INDEX	Auswerteelektronik Va- riablen-Index für Messsystem-Fingerprint	VARIABL	Unsigned16 (2)	keine Angabe	S	Ja	0	0	R/W (belie big)	$\begin{array}{l} 0 = \text{Mass Flow} \\ \text{Rate} \\ 1 = \text{Temperature} \\ 3 = \text{Density} \\ 5 = \text{Volume Flow} \\ \text{Rate} \\ 46 = \text{Raw Tube} \\ \text{Frequency} \\ 47 = \text{Drive Gain} \\ 48 = \text{Case} \\ \text{Temperature} \\ 49 = \text{LPO} \\ \text{Amplitude} \\ 50 = \text{RPO} \\ \text{Amplitude} \\ 51 = \text{Board} \\ \text{Temperature} \\ 52 = \text{Input Voltage} \\ 54 = \text{Live Zero} \end{array}$
39	MFP_TYPE	Fingerprint-Typ	ENUM	Unsigned16 (2)	keine Angabe	S	Ja	0	0	R/W (belie big)	0 = Current 1 = Factory Cal Carriage Return (CR) 2 = Installation Carriage Return (CR) 3 = Last Zero
40	MFP_TV_INST	Auswerteelektronik-Va- riable, momentan (gültig nur für den aktuellen Fingerprint)	VARIABL E	FLOAT (4)	R-629- 630	D		_		R	
41	MFP_TV_AVG	Auswerteelektronik-Va- riable, Mittelwert (über 1 Minute gleitend)	VARIABL E	FLOAT (4)	R-631- 632	D		-		R	
42	MFP_TV_STD_DEV	Auswerteelektronik-Va- riable, Std-Abweichung (über 1 Minute gleitend)	VARIABL E	FLOAT (4)	R-633- 634	D		-		R	

Betrieb

TB-Referenz

Tabelle B-6.	DIAGNOSTICS	Transducer Blo	ock Parameter (Fortsetzung)
--------------	-------------	----------------	-----------------	--------------

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
43	MFP_TV_MAX	Auswerteelektronik-Va- riable, Max. (seit letztem Zurücksetzen der Statistik)	VARIABL E	FLOAT (4)	R-635- 636	D		-		R	
44	MFP_TV_MIN	Auswerteelektronik-Va- riable, Min. (seit letztem Zurücksetzen der Statistik)	VARIABL E	FLOAT (4)	R-637- 638	D		-		R	
	Ergänzungen in v4.0										•
45	DIAG_FEATURE_KEY	Aktive Funktionen	STRING	BIT STRING (2)	R-5000	S		_		R	0x0000 = standard 0x0010 = Meter Verify. 0x0080 = PID 0x0800 = Enh. Density 0x1000 = API
46	SYS_PowerOnTimeSec	Einschaltzeit (Sekunden seit letztem Zurücksetzen)	VARIABL E	Unsignedl3 2 (4)	R-2625- 2626	D		-		R	keine Angabe
47	SNS_InputVoltage	Eingangsspannung (V)	VARIABL E	FLOAT (4)	R-385- 386	D		-		R	keine Angabe
48	SNS_TargetAmplitude	Aktuelle Soll-Amplitude (mV/Hz) (Vor 700 2.1, Ak- tuell & Überschrieben)	VARIABL E	FLOAT (4)	R-395- 396	D		-		R	keine Angabe
49	SNS_CaseRTDRes	Widerstandsthermome- ter-Widerstand am Gehäuse (Ohm)	VARIABL E	FLOAT (4)	R-473- 474	D		-		R	keine Angabe
50	SYS_RestoreFactoryCon fig	Werkskonfiguration wiederherstellen	Methode	Unsigned16 (2)	C-0247	S	Ja	0	0	R/W (OOS)	0x0000 = no action 0x0001 = Restore
51	SNS_FlowZeroRestore	Werksseitigen Nullpunkt wiederherstellen	Methode	Unsigned16 (2)	C-243	S	Ja	0		R/W (OOS)	0x0000 = no action 0x0001 = Restore
52	SNS_AutoZeroFactory	Werksseitiger Signal-Off- set bei Nulldurchfluss (Einheiten in μs)	VARIABL E	FLOAT (4)	R – 2673- 2674	S		-		R	keine Angabe
53	SYS_ResetPowerOnTim e	Einschaltzeit zurücksetzen	Methode	Unsigned16 (2)	C-242	S	Ja	0	0	R/W (belie big)	0x0000 = no action 0x0001 = Reset
54	FRF_EnableFCFValidati	Systemverifizierung starten/stoppen	Methode	Unsigned16 (2)	R-3000	S	Ja	0	0	R/W (OOS)	0 = Disabled 1 = Full Meter Verification (including current calibrations) 2 = Factory Air Verification 3 = Factory Water Verification 4 = Special debug mode 5 = Abort 6 = Background Meter Verification (no current cal) 7 = Single Point Baseline (takes the place of factory air and factory water)
55	FRF_FaultAlarm	Status der Ausgänge während der Systemverifizierung	ENUM	Unsigned16 (2)	R-3093	S	Ja	0	0	R/W (belie big)	0=Last Value

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
56	FRF_StiffnessLimit	Sollwert der Steifigkeits- grenze. Angabe in Prozent.	VARIABL E	FLOAT (4)	R-3147- 3148	S	Ja	0	0,04	R/W (belie big)	
57	FRF_AlgoState	Der aktuelle Status der Systemverifizierung.	VARIABL E	Unsigned16 (2)	R-3001	S		-		R	1 bis 18
58	FRF_AbortCode	Der Grund für den Abbruch der Systemverifizierung.	ENUM	Unsigned16 (2)	R-3002	S		-		R	0 = No error 1 = Manual Abort 2 = Watchdog Timeout 3 = Frequency Drift 4 = High Peak Drive Voltage 5 = High Drive Current Standard Deviation 6 = High Drive Current Mean Value 7 = Drive loop reported error 8 = High Delta T Standard Deviation 9 = High Delta T Value 10 = State Running
59	FRF_StateAtAbort	Der Status der Systemve- rifizierung beim Abbruch.	VARIABL E	Unsigned16 (2)	R-3003	S		-		R	1 bis 18
60	FRF_Progress	Fortschritt (% fertig)	VARIABL E	Unsigned16 (2)	R-3020	S		-		R	keine Angabe
61	FRF_StiffOutLimLpo	Liegt die LPO-Steifigkeit außerhalb der Grenzwerte?	VARIABL E	Unsigned16 (2)	R-3004	S		-		R	keine Angabe
62	FRF_StiffOutLimRpo	Liegt die RPO-Steifigkeit außerhalb der Grenzwerte?	VARIABL E	Unsigned16 (2)	R-3005	S		-		R	keine Angabe
63	FRF_StiffnessLpo_mean	Aktuelle LPO-Steifigkeit, als Mittelwert berechnet	VARIABL E	FLOAT (4)	R – 3101 – 3102 mit 3100 = 0	S		-		R	keine Angabe
64	FRF_StiffnessRpo_mean	Aktuelle RPO-Steifigkeit, als Mittelwert berechnet	VARIABL E	FLOAT (4)	R- 3103- 3104 mit 3100 = 0	S		_		R	keine Angabe
65	FRF_Damping_meanR – 3109-3110 with 3100=0	Aktuelle Dämpfung, als Mittelwert berechnet	VARIABL E	FLOAT (4)	R-3105- 3106 mit 3100 = 0	S		_		R	keine Angabe
66	FRF_MassLpo_mean	Aktuelle LPO-Masse, als Mittelwert berechnet	VARIABL E	FLOAT (4)	R-3107- 3108 mit 3100 = 0	S		-		R	keine Angabe
67	FRF_MassRpo_mean	Aktuelle RPO-Masse, als Mittelwert berechnet	VARIABL E	FLOAT (4)	R-3109- 3110 mit 3100 = 0	S		-		R	keine Angabe

Tabelle B-6. D	IAGNOSTICS	Transducer	Block	Parameter ((Fortsetzung))
----------------	------------	------------	-------	-------------	---------------	---

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
68	FRF_StiffnessLpo_ stddev	Aktuelle LPO-Steifigkeit, als Standardabweichung berechnet	VARIABL E	FLOAT (4)	R-3101- 3102 mit 3100 = 1	S		-		R	keine Angabe
69	FRF_StiffnessRpo_ stddev	Aktuelle RPO-Steifigkeit, als Standardabweichung berechnet	VARIABL E	FLOAT (4)	R-3103- 3104 mit 3100 = 1	S		-		R	keine Angabe
70	FRF_Damping_stddev	Aktuelle Dämpfung, als Standardabweichung berechnet	VARIABL E	FLOAT (4)	R-3105- 3106 mit 3100 = 1	S		_		R	keine Angabe
71	FRF_MassLpo_stddev	Aktuelle LPO-Masse, als Standardabweichung berechnet	VARIABL E	FLOAT (4)	R-3107- 3108 mit 3100 =1	S		-		R	keine Angabe
72	FRF_MassRpo_stddev	Aktuelle RPO-Masse, als Standardabweichung berechnet	VARIABL E	FLOAT (4)	R-3109- 3110 mit 3100 =1	S		-		R	keine Angabe
73	FRF_StiffnessLpo_air	Die LPO-Steifigkeit, als Mittelwert während der weksseitigen Luft- kalibrierung berechnet	VARIABL E	FLOAT (4)	R-3101- 3102 mit 3100 = 2	S		-		R	keine Angabe
74	FRF_StiffnessRpo_air	Die RPO-Steifigkeit, als Mittelwert während der werksseitigen Luft- kalibrierung berechnet	VARIABL E	FLOAT (4)	R-3103- 3104 mit 3100 = 2	S		-		R	keine Angabe
75	FRF_Damping_air	Die Dämpfung, als Mit- telwert während der werksseitigen Luft- kalibrierung berechnet	VARIABL E	FLOAT (4)	R-3105- 3106 mit 3100 = 2	S		-		R	keine Angabe
76	FRF_MassLpo_air	Die LPO-Masse, als Mit- telwert während der werksseitigen Luft- kalibrierung berechnet	VARIABL E	FLOAT (4)	R-3107- 3108 mit 3100 = 2	S		-		R	keine Angabe
77	FRF_MassRpo_air	Die RPO-Masse, als Mit- telwert während der werksseitigen Luft- kalibrierung berechnet	VARIABL E	FLOAT (4)	R-3109- 3110 mit 3100 = 2	S		-		R	keine Angabe
78	FRF_StiffnessLpo_water	Die LPO-Steifigkeit, als Mittelwert während der werksseitigen Was- serkalibrierung berechnet	VARIABL E	FLOAT (4)	R-3101- 3102 mit 3100 = 3	S		-		R	keine Angabe
79	FRF_StiffnessRpo_water	Die RPO-Steifigkeit, als Mittelwert während der werksseitigen Was- serkalibrierung berechnet	VARIABL E	FLOAT (4)	R-3103- 3104 mit 3100 = 3	S		-		R	keine Angabe
80	FRF_Damping_water	Die Dämpfung, als Mit- telwert während der werksseitigen Was- serkalibrierung berechnet	VARIABL E	FLOAT (4)	R-3105- 3106 mit 3100 = 3	S		-		R	keine Angabe
81	FRF_MassLpo_water	Die LPO-Masse, als Mit- telwert während der werksseitigen Was- serkalibrierung berechnet	VARIABL E	FLOAT (4)	R-3107- 3108 mit 3100 = 3	S		-		R	keine Angabe
82	FRF_MassRpo_water	Die RPO-Masse, als Mit- telwert während der werksseitigen Was- serkalibrierung berechnet	VARIABL E	FLOAT (4)	R-3109- 3110 mit 3100 = 3	S		-		R	keine Angabe
83	ALERT_TIMEOUT	Alarm-Timeout	VARIABL E	Unsigned16 (2)	R-1512	S	Ja	0	0	R/W (belie big)	0 bis 300 s

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
	Ergänzungen in v5.0										L
84	FRF_FCFValidCounter	Zählt, wie oft der Algorith- mus der Systemverifizierung er- folgreich ausgeführt wurde.	VARIABL E	Unsigned16 (2)	R-3017	S		0		R	Keine Angabe
	Ergänzungen in V6.0										
85	FRF_StartMeterVer	Online-Smart-Systemve- rifizierung starten (entspricht Reg 3000 = 6)	VARIABL E	DS-66 (2)	Coil 190	S		0		RW (belie big)	Wert ist Teil von DS-66 0 = no action 1 = Start Meter Verification in continue measurement mode
86	FRF_MV_Index	FCF Datalog Index (0-19, 0 = most recent run)	VARIABL E	Unsigned16 (2)	2984	S		0		RW (belie big)	keine Angabe
87	FRF_MV_Counter	FCF Datalog Position 1: Laufnummer	VARIABL E	Unsigned16 (2)	2985	S		-		R	keine Angabe
88	FRF_MV_Status	FCF Datalog Position 2: Status (Bit7 = FCF Erfolg- reich/Fehlgeschlagen, Bits6-4 = Status, Bits3-0 = Abbruchcode) Abbruch- status ist komprimiert, damit er in 3 Bits passt	VARIABL E	Unsigned16 (2)	2986	S		-		R	keine Angabe
89	FRF_MV_Time	FCF Datalog Position 3: Startzeitpunkt	VARIABL E	Unsigned32 (4)	2987- 2988	S		-		R	keine Angabe
90	FRF_MV_LPO_Norm	FCF Datalog Position 4: LPO – normalisierte Daten	VARIABL E	FLOAT (4)	2989- 2990	S		-		R	keine Angabe
91	FRF_MV_RPO_Norm	FCF Datalog Position 5: RPO – normalisierte Daten	VARIABL E	FLOAT (4)	2991- 2992	S		-		R	keine Angabe
92	FRF_DriveCurr	Antriebsstrom	VARIABL E	FLOAT (4)	3113- 3114	S		-		RW (belie big)	keine Angabe
93	FRF_DL_T	Delta T	VARIABL E	FLOAT (4)	3115- 3116	S		-		RW (belie big)	keine Angabe
94	FRF_Temp	Temperatur	VARIABL E	FLOAT (4)	3117- 3118	S		-		R	keine Angabe
95	FRF_Density	Dichte	VARIABL E	FLOAT (4)	3119- 3120	S		-		RW (OOS)	keine Angabe
96	FRF_DriveFreq	Antriebsfrequenz	VARIABL E	FLOAT (4)	3121- 3122	S		-		RW (OOS)	keine Angabe
97	FRF_LpoFilt	LPO-Filter	VARIABL E	FLOAT (4)	3123- 3124	S		-		RW (OOS)	keine Angabe
98	FRF_RpoFilt	RPO-Filter	VARIABL E	FLOAT (4)	3125- 3126	S		-		RW (OOS)	keine Angabe

Modell 2700 Transducer Blocks – Referenz

Tabelle B-6.	DIAGNOSTICS	Transducer Block	Parameter	(Fortsetzung)
--------------	-------------	-------------------------	-----------	---------------

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
99	FRF_DataSetSelIndex	Auswahl des FCF-Verifizierungsdaten- sets	VARIABL E	Unsigned16 (2)	Unsigne d16 (2)	S		-		RW (belie big)	0 = Current Data Means 1 = Current Data Std Deviations 2 = Factory Cal of Air Means 3 = Factory Cal of Water Means 4 = Running average data 5 = Standard Error of the Estimate
	Änderungen in V7.0 – vom	Calibration TB verschoben									
100	FRF_MV_FirstRun_Time	FCF Timer: Zeit bis zur ersten Ausführung in Stunden (nur bei aktivier- ter Systemverifizierung)	VARIABL E	FLOAT (4)	2993- 2994	S		-		RW (belie big)	keine Angabe
101	FRF_MV_Elapse_Time	FCF Timer: Zeit zwischen den Ausführungen, nach Durchführung der ersten Ausführung, in Stunden (nur bei aktivierter Systemverifizierung)	VARIABL E	FLOAT (4)	2995- 2996	S		-		RW (belie big)	keine Angabe
102	FRF_MV_Time_Left	FCF-Timer: Zeit bis zur nächsten Ausführung in Stunden	VARIABL E	FLOAT (4)	2997- 2998	S		-		R	keine Angabe
103	FRF_ToneLevel	Frf Tonpegel (mA) (nur bei aktivierter Systemverifizierung)	VARIABL E	FLOAT (4)	3083- 3084	S		-		RW (OOS)	keine Angabe
104	FRF_DriveFreq	Tonrampenzeit (Sekun- den) (nur bei aktivierter Systemverifizierung)	VARIABL E	FLOAT (4)	3085- 3086	S		-		RW (OOS)	keine Angabe
105	FRF_BICoeff	BL Koef. (nur bei aktivier- ter Systemverifizierung)	VARIABL E	FLOAT (4)	3087- 3088	S		-		RW (OOS)	keine Angabe
106	FRF_DriveTarget	FRF-Antriebsziel (nur bei aktivierter Systemverifizierung)	VARIABL E	FLOAT (4)	3089- 3090	S		-		RW (OOS)	keine Angabe
107	FRF_DrivePCoeff	FRF-Antrieb P-Koeffizi- ent (nur bei aktivierter Systemverifizierung)	VARIABL E	FLOAT (4)	3091- 3092	S		-		RW (OOS)	keine Angabe
108	FRF_ToneSpacingMult	Tonabstandsmultiplikator (nur bei aktivierter Systemverifizierung)	VARIABL E	FLOAT (4)	3159- 3160	S		-		RW (OOS)	keine Angabe
109	FRF_Freq_DriftLimit	Frequenzdrift-Grenzwert (nur bei aktivierter Systemverifizierung)	VARIABL E	FLOAT (4)	3161- 3162	S		-		RW (OOS)	keine Angabe
110	FRF_Max_Current_mA	Max. Sensorstrom (nur bei aktivierter Systemverifizierung)	VARIABL E	FLOAT (4)	3163- 3164	S		-		RW (OOS)	keine Angabe
111	FRF_KFQ2	KFQ2 Lineare Dichtekor- rektur für Steifigkeitswert	VARIABL E	FLOAT (4)	3165- 3166	S		0		RW (belie big)	keine Angabe

Tabelle B-6.	DIAGNOSTICS Transd	ucer Block Parameter	(Fortsetzung)
--------------	--------------------	----------------------	---------------

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
112	SYS_AnalogOutput_ Fault	Gibt an, ob eine kritische Störung vorliegt	VARIABL E	DS-66 (2)	-	-		0		R	Wert ist Teil von DS-66 0 = No Critical Fault 1 = Critical Fault Present
113	SNS_MV_Failed	Gibt an, ob die Systemve- rifizierung fehlgeschlagen ist	VARIABL E	DS-66 (2)	R433/ Bit #14	-		0		R	Wert ist Teil von DS-66 0 = Meter Verification did not Fail 1 = Meter Verification Failed

Tabelle B-7.	DIAGNOSTICS T	Fransducer	Block Anzeigen
--------------	---------------	------------	----------------

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4	Anzeige 4_1	Anzeige 4_2
	Standard-FF-Parameter						
0	BLOCK_STRUCTURE						
1	ST_REV	2	2	2	2	2	2
2	TAG_DESC						
3	STRATEGY				2		
4	ALERT_KEY				1		
5	MODE_BLK	4		4			
6	BLOCK_ERR	2		2			
7	XD_ERROR	1		1			
	Schwallstrom-Einstellungen						
8	SLUG_TIME				4		
9	SLUG_LOW_LIMIT				4		
10	SLUG_HIGH_LIMIT				4		
	Alarmstatus						
11	ALARM1_STATUS	2		2			
12	ALARM2_STATUS	2		2			
13	ALARM3_STATUS	2		2			
14	ALARM4_STATUS	2		2			
15	FAULT_LIMIT_CODE		2				
16	LAST_MEASURED_VALUE_FAULT_ TIMEOUT		2				
17	ALARM_INDEX				2		
18	ALARM_SEVERITY				2		

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4	Anzeige 4_1	Anzeige 4_2
	Diagnose	-			-		
19	DRIVE_GAIN	5		5			
20	TUBE_FREQUENCY			4			
21	LIVE_ZERO			4			
22	LEFT_PICKOFF_VOLTAGE			4			
23	RIGHT_PICKOFF_VOLTAGE			4			
24	BOARD_TEMPERATURE			4			
25	ELECT_TEMP_MAX			4			
26	ELECT_TEMP_MIN			4			
27	ELECT_TEMP_AVG			4			
28	SENSOR_TEMP_MAX			4			
29	SENSOR_TEMP_MIN			4			
30	SENSOR_TEMP_AVG			4			
31	RTD_RESISTANCE_CABLE			4			
32	RTD_RESISTANCE_METER			4			
33	CP_POWER_CYCLE			2			
	Messsystem-Fingerprinting						
34	MFP_SAVE_FACTORY				2		
35	MFP RESET STATS				2		
36	EN MEP				2		
37	 MEP_UNITS				2		
38					2		
39					2		
40	MEP TV INST			4			
41	MEP TV AVG			4			
42	MEP TV STD DEV			4			
43				4			
44				4			
	Fraänzungen in v4 0			<u> </u>			
45			1	1	2		
45				4	2		
40	SNS_roweronninesec			4			
47				4			
40				4			
49	OVO Destars Estar Oscilia			4			
50			2				
51			2				
52	SNS_AutoZeroFactory				4		
53	SYS_ResetPowerOnTime		2				
54	FRF_EnableFCFValidation		2				
55	FRF_FaultAlarm		2				
56	FRF_StiffnessLimit		4				
57	FRF_AlgoState					2	
58	FRF_AbortCode					2	
59	FRF_StateAtAbort					2	
60	FRF_Progress					2	
61	FRF_StiffOutLimLpo					2	
62	FRF_StiffOutLimRpo					2	

Tabelle B-7. DIAGNOSTICS Transducer Block Anzeigen (Fortsetzung)

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4	Anzeige 4_1	Anzeige 4_2
63	FRF_StiffnessLpo_mean					4	
64	FRF_StiffnessRpo_mean					4	
65	FRF_Damping_mean					4	
66	FRF_MassLpo_mean					4	
67	FRF_MassRpo_mean					4	
68	FRF_StiffnessLpo_stddev					4	
69	FRF_StiffnessRpo_stddev					4	
70	FRF_Damping_stddev					4	
71	FRF_MassLpo_stddev					4	
72	FRF_MassRpo_stddev					4	
73	FRF_StiffnessLpo_air					4	
74	FRF_StiffnessRpo_air					4	
75	FRF_Damping_air					4	
76	FRF_MassLpo_air					4	
77	FRF_MassRpo_air					4	
78	FRF_StiffnessLpo_water					4	
79	FRF_StiffnessRpo_water					4	
80	FRF_Damping_water					4	
81	FRF_MassLpo_water					4	
82	FRF_MassRpo_water					4	
83	ALERT_TIMEOUT		2				
84	FRF_FCFValidCounter					2	
85	FRF_StartMeterVer						2
86	FRF_MV_Index						2
87	FRF_MV_Counter						2
88	FRF_MV_Status						2
89	FRF_MV_Time						4
90	FRF_MV_LPO_Norm						4
91	FRF_MV_RPO_Norm						4
92	FRF_DriveCurr						4
93	FRF_DL_T						4
94	FRF_Temp						4
95	FRF_Density						4
96	FRF_DriveFreq						4
97	FRF_LpoFilt						4
98	FRF_RpoFilt						4
99	FRF_DataSetSelIndex						4
100	FRF_MV_FirstRun_Time						4
101	FRF_MV_Elapse_Time						4
102	FRF_MV_Time_Left						4
103	FRF_Density						4
104	FRF_ToneRampTime						4
105	FRF_BICoeff						4
106	FRF_DriveTarget						4
107	FRF_DrivePCoeff						4

Tabelle B-7. DIAGNOSTICS Transducer Block Anzeigen (Fortsetzung)

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4	Anzeige 4_1	Anzeige 4_2
108	FRF_ToneSpacingMult						4
109	FRF_Freq_DriftLimit						4
110	FRF_Max_Current_mA						4
111	FRF_KFQ2						4
112	SYS_AnalogOutput_Fault		2				
113	SNS_MV_Failed		2				
	Summe	22	26	112	39	96	100

Tabelle B-7. DIAGNOSTICS Transducer Block Anzeigen (Fortsetzung)

B.5 DEVICE INFORMATION Transducer Block Parameter

Nachfolgend finden Sie die Parameter (Tabelle B-8) und Anzeigen (Tabelle B-9) für den DEVICE INFORMATION Transducer Block.

Tabelle B-8. DEVICE INFORMATION Transducer Block Parameter

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
	Standard-FF-Parameter	•									
0	BLOCK_STRUCTURE	Anfang des Transdu- cer Blocks	VARIABL E	DS_64(5)	keine Angab e	S		keine Angabe		R/W (OOS oder Auto)	keine Angabe
1	ST_REV	Der Revisionsstand der Festdaten des zugehörigen Function Blocks. Inkrementiert bei jeder Änderung des Festdaten- speichers.	VARIABL E	Unsigned16 (2)	keine Angab e	S		0		R	keine Angabe
2	TAG_DESC	Die Anwenderbesch- reibung für die gewünschte Anwendung des Blocks.	STRING	OCTET STRING (32)	keine Angab e	S	Ja	Leerzeic hen		R/W (OOS oder Auto)	Beliebige 32 Zeichen
3	STRATEGY	Das Feld "Strategy" kann zur Identifi- zierung von Blockgruppen ver- wendet werden. Diese Daten werden nicht durch den Block geprüft oder verarbei- tet.	VARIABL E	Unsigned16 (2)	keine Angab e	S	Ja	0	0	R/W (OOS oder Auto)	keine Angabe
4	ALERT_KEY	Die Kennnummer der Anlage. Diese Infor- mation wird vom Host zur Sortierung von Alarmen usw. ver- wendet.	VARIABL E	Unsigned8 (1)	keine Angab e	S	Ja	0	1	R/W (OOS oder Auto)	1 bis 255
5	MODE_BLK	Istwert-, Sollwert-, zugelassener – und normaler Modus des Blocks.	RECORD	DS-69 (4)	keine Angab e	mix	Ja	Auto	01	R/W (OOS oder Auto)	Siehe Abschnitt 2/6 von FF-891

Tabelle B-8.	DEVICE INFORMATION Transducer Block Parameter ((Fortsetzung))
--------------	---	---------------	---

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
6	BLOCK_ERR	Dieser Parameter zeigt den Status der Störung entsprechend der Hardware- oder Software-Kom- ponenten des jeweiligen Blocks.	STRING	BIT STRING (2)	keine Angab e	D/20		-		R	Siehe Abschnitt 4.8 von FF-903
7	XD_ERROR	Wird verwendet für alle Konfigurations-, Hard- ware-, Verdrahtungs- oder Systemfehler im Block.	VARIABL E	Unsigned8 (1)	keine Angab e	D		-		R	18 = Process Error 19 = Configuration Error 20 = Electronics Failure Carriage return (CR) 21 = Sensor Failure
	Auswerteelektronik-Daten			-	-		-		-		
8	SERIAL_NUMBER	Seriennummer dieses Geräts	VARIABL E	Unsigned32 (4)	R-48- 49	S	Ja	0	0	R/W (belie big)	≥0
9	OPTION_BOARD_CODE	Code der Ausgangs- option	ENUM	Unsigned16 (2)	R-1138	S		20		R	0 = None 2 = Foundation Fieldbus (LC302 board) 20 = Foundation Fieldbus (Hornet board)
10	700_SW_REV	Softwareversion der Auswerteelektronik Modell 700	VARIABL E	Unsigned16 (2)	R-1137	S		S/W Rev		R	keine Angabe
11	2700_SW_REV	Softwareversion der Auswerteelektronik Modell 2700	VARIABL E	Unsigned16 (2)	R-1200	S		S/W Rev		R	keine Angabe
12	CEQ_NUMBER	CEQ-Nummer der Auswerteelektronik Modell 2700	VARIABL E	Unsigned16 (2)	R-5005	S		S/W Rev		R	keine Angabe
13	DESCRIPTION	Anwendertext	STRING	OCTET STRING (16)	R-96- 103	S	Ja	"CONFI GURE XMTR"	"CON FIGU RE XMT R"	R/W (belie big)	
	Sensordaten										
14	SENSOR_SN	Sensor-Seriennummer	VARIABL E	Unsigned32 (4)	R- 0127- 128	S	Ja	0	0	R/W (belie big)	≥0
15	SENSOR_TYPE	Sensortyp (z. B. F200, CMF025)	STRING	VISIBLE STRING (16)	R-0425	S		"@@@ @@@ @@@ @@@ @@@ @ @ "		R	
16	SENSOR_TYPE_CODE	Sensortyp-Code	ENUM	Unsigned16 (2)	R-1139	S	Ja	0	0	R/W	0 = Curve Tube 1 = Straight Tube

Tabelle B-8.	DEVICE INFORMATION Transducer Block Parameter	(Fortsetzung)
--------------	---	---------------

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
17	SENSOR_MATERIAL	Sensorwerkstoff	ENUM	Unsigned16 (2)	R-0130	S	Ja	253	253	R/W (belie big)	3 = Hastelloy C-22 4 = Monel 5 = Tantalum 6 = Titanium 19 = 316L stainless steel 23 = Inconel 252 = Unknown 253 = Special
18	SENSOR_LINER	Auskleidungswerkstoff	ENUM	Unsigned16 (2)	R-0131	S	Ja	253	253	R/W (belie big)	10 = PTFE (teflon) 11 = Halar 16 = Tefzel 251 = None 252 = Unknown 253 = Special
19	SENSOR_END	Flanschtyp	ENUM	Unsigned16 (2)	R-0129	S	Ja	253	253	R/W (belie big)	$\begin{array}{l} 0 = \text{ANSI 150} \\ 1 = \text{ANSI 300} \\ 2 = \text{ANSI 600} \\ 5 = \text{PN 40} \\ 7 = \text{JIS 10K} \\ 8 = \text{JIS 20K} \\ 9 = \text{ANSI 900} \\ 10 = \text{Sanitary} \\ \text{Clamp Fitting} \\ 11 = \text{Union} \\ 12 = \text{PN 100} \\ 251 = \text{None} \\ 252 = \text{Unknown} \\ 253 = \text{Special} \\ \end{array}$
20	MASS_MIN_RANGE	MinMessbereich für Massendurchfluss	VARIABL E	FLOAT (4)	R-181- 182	S		Calc		R	keine Angabe
21	TEMP_MIN_RANGE	MinMessbereich für Temperatur	VARIABL E	FLOAT (4)	R-183- 184	S		Berechn		R	keine Angabe
22	HIGH_DENSITY_LIMIT	Obere Dichtegrenze des Sensors (g/cm3)	VARIABL E	FLOAT (4)	R-187- 188	S		Berechn		R	keine Angabe
23	VOLUME_MIN_RANGE	MinMessbereich für Volumendurchfluss	VARIABL E	FLOAT		S		Berechn		R/W	keine Angabe
24	SNS_PuckDeviceTypeCod e	Gerätetyp des ange- schlossenen Core-Prozessors	ENUM	Unsigned16 (2)	R-1162	S		-		R	40 = 700 (CP) 50 = 800 (ECP)
25	AI_SIMULATE_MODE	AI-Simulationsmodus	ENUM	Unsigned16 (2)	C-84	S	Ja	0	0	R/W (belie big)	0 = disabled 1 = enabled
26	SNS_HartDeviceID	Eindeutige Core-Pro- zessorkennung	VARIABL E	Unsigned32 (4)	R- 1187- 1188	S		0		R	keine Angabe
27	SYS_DeviceType	Gerätetyp der Auswer- teelektronik	VARIABL E	Unsigned16 (2)	R-120	S		43		R	keine Angabe

Tabelle B-9. DEVICE INFORMATION Transducer Block Anzeigen

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
	Standard-FF-Parameter				
0	BLOCK_STRUCTURE				
1	ST_REV	2	2	2	2

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	XD_ERROR	1		1	
	Auswerteelektronik-Daten				
8	SERIAL_NUMBER		4		
9	OPTION_BOARD_CODE				2
10	700_SW_REV		2		
11	2700_SW_REV		2		
12	CEQ_NUMBER		2		
13	DESCRIPTION				16
	Sensordaten				
14	SENSOR_SN		4		
15	SENSOR_TYPE				16
16	SENSOR_TYPE_CODE				2
17	SENSOR_MATERIAL				2
18	SENSOR_LINER				2
19	SENSOR_END				2
20	MASS_MIN_RANGE				4
21	TEMP_MIN_RANGE				4
22	DENSITY_MIN_RANGE				4
23	VOLUME_MIN_RANGE				4
24	SNS_PuckDeviceTypeCode				2
25	AI_SIMULATE_MODE				2
26	SNS_HartDeviceID				4
27	SYS_DeviceType				2
	Summe	9	16	9	73

Tabelle B-9.	DEVICE INFORMATION Transducer Block Anzeigen	(Fortsetzuna)
	DEVICE IN OTHINTION HUIDUUGO DIOOK / IIIZOIGOI	(i bitbbtzung)

B.6 LOCAL DISPLAY Transducer Block Parameter

Nachfolgend finden Sie die Parameter (Tabelle B-10) und Anzeigen (Tabelle B-11) für den LOCAL DISPLAY Transducer Block.

Tabelle B-10. LOCAL DISPLAY Transducer Block Parameter

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
	Standard-FF-Parameter		•	•	•						
0	BLOCK_STRUCTURE	Anfang des Transdu- cer Blocks	VARIABL E	DS_64(5)	keine Angabe	S		keine Angab e		R/W (OOS oder Auto)	keine Angabe
1	ST_REV	Der Revisionsstand der Festdaten des zu- gehörigen Function Blocks. Inkrementiert bei jeder Änderung des Festdatenspeichers.	VARIABL E	Unsigned16 (2)	keine Angabe	S		0		R	keine Angabe
2	TAG_DESC	Die Anwenderbesch- reibung für die gewünschte An- wendung des Blocks.	STRING	OCTET STRING (32)	keine Angabe	S	Ja	Leerze ichen		R/W (OOS oder Auto)	Beliebige 32 Zeichen
3	STRATEGY	Das Feld "Strategy" kann zur Identifi- zierung von Blockgruppen ver- wendet werden. Diese Daten werden nicht durch den Block ge- prüft oder verarbeitet.	VARIABL E	Unsigned16 (2)	keine Angabe	S	Ja	0	0	R/W (OOS oder Auto)	keine Angabe
4	ALERT_KEY	Die Kennnummer der Anlage. Diese Infor- mation wird vom Host zur Sortierung von Alarmen usw. verwendet.	VARIABL E	Unsigned8 (1)	keine Angabe	S	Ja	0	1	R/W	1 bis 255
5	MODE_BLK	Istwert-, Sollwert-, zu- gelassener – und normaler Modus des Blocks.	RECORD	DS-69 (4)	keine Angabe	mix		Auto	01	R/W	Siehe Abschnitt 2/6 von FF-891
6	BLOCK_ERR	Dieser Parameter zeigt den Status der Störung entsprechend der Hardware- oder Software-Kom- ponenten des jeweiligen Blocks.	STRING	BIT STRING (2)	keine Angabe	D/20		-		R	Siehe Abschnitt 4.8 von FF-903
7	XD_ERROR	Wird verwendet für alle Konfigurations-, Hard- ware-, Verdrahtungs- oder Systemfehler im Block.	VARIABL E	Unsigned8 (1)	keine Angabe	D		-		R	18 = Process Error 19 = Configuration Error 20 = Electronics Failure Carriage return (CR) 21 = Sensor Failure
	Bedieninterface	I	I	T	1		1	1	1		
8	EN_LDO_TOT_RESET	Bedieninterface-Zäh- lerrücksetzung aktivieren/deaktivieren	ENUM	Unsigned16 (2)	C-0094	S	Ja	0	0	R/W (belie big)	0 = Disable 1 = Enable
9	EN_LDO_TOT_START_ STOP	Bedieninterface Zäh- ler Start/Stopp aktivieren/deaktivieren	ENUM	Unsigned16 (2)	C-0091	S	Ja	0	0	R/W	0 = Disable 1 = Enable
10	EN_LDO_AUTO_SCROLL	Auto Scroll auf Bedieninterface aktivieren/deaktivieren	ENUM	Unsigned16 (2)	C-0095	S	Ja	0	0	R/W	0 = Disable 1 = Enable
11	EN_LDO_OFFLINE_MENU	Offline-Menü auf Bedieninterface aktivieren/deaktivieren	ENUM	Unsigned16 (2)	C-0096	S	Ja	1	1	R/W	0 = Disable 1 = Enable

Tabelle B-10.	LOCAL DISPLAY	Transducer Block	Parameter	(Fortsetzung)
---------------	---------------	-------------------------	-----------	---------------

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
12	EN_LDO_OFFLINE_PWD	Offline-Passwort für Bedieninterface aktivieren/deaktivieren	ENUM	Unsigned16 (2)	C-0097	S	Ja	0	0	R/W	0x0000 = disabled 0x0001 = enabled
13	EN_LDO_ALARM_MENU	Alarm-Menü auf dem Bedieninterface aktivieren/deaktivieren	ENUM	Unsigned16 (2)		S	Ja	1	1	R/W	0x0000 = disabled 0x0001 = enabled
14	EN_LDO_ACK_ALL_ALARMS	Bedieninterface Bestä- tigung aller Alarme aktivieren/deaktivieren	ENUM	Unsigned16 (2)		S	Ja	1	1	R/W (belie big)	0x0000 = disabled 0x0001 = enabled
15	LDO_OFFLINE_PWD	Bedieninterface Offline-Passwort	VARIABL E	Unsigned16 (2)		S	Ja	1234	1234	R/W (belie big)	0 - 9999
16	LDO_SCROLL_RATE	Scroll-Rate des Bedieninterface	VARIABL E	Unsigned16 (2)		S	Ja	1	1	R/W (belie big)	-
17	LDO_BACKLIGHT_ON	Hintergrundbeleuch- tung des Bedieninterface	ENUM	Unsigned16 (2)		S	Ja	1	1	R/W (belie big)	0 = off 1 = on
18	UI_Language	Auswahl der Displaysprache	ENUM	Unsigned16 (2)		S	Ja	0	0	R/W (belie big)	0 = English 1 = German 2 = French 3 = Reserved 4 = Spanish
19	LDO_VAR_1_CODE	Zeigt die Variable des Codes auf dem lokalen Bedieninterface an	ENUM	Unsigned16 (2)		S	Ja	0	0	R/W (belie big)	Identisch mit LDO_VAR_2_CODE

Modell 2700 Transducer Blocks – Referenz

Tabelle B-10.	LOCAL DISPLAY	Transducer Block	Parameter	(Fortsetzung)	
---------------	---------------	-------------------------	-----------	---------------	--

							L	/ert			
OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ	Hinzufügen zu CF	Voreingestellter M	Beispielwert	Zugriff	Liste der Werte
20	LDO_VAR_2_CODE	Zeigt die Variable des Codes auf dem lokalen Bedieninterface an	ENUM	Unsigned16 (2)		S	Ja	2	2	R/W (belie big)	0 = Mass Flow Rate 1 = Temperature 2 = Mass Total 3 = Density 4 = Mass Total 7 = Volume Flow Rate 6 = Volume Total 7 = Volume Inventory 15 = API: Corr Vol Flow 17 = API: Corr Vol Total 18 = API: Corr Vol Inv 19 = API: Avg Density 20 = API: Avg Temp 21 = ED: Density At Ref 22 = ED: Density (SGU) 23 = ED: Std Vol Flow Rate 24 = ED: Std Vol Total 25 = ED: Net Mass Flow 27 = ED: Net Mass Flow 27 = ED: Net Mass Total 28 = ED: Net Mass Total 28 = ED: Net Mass Inv 29 = ED: Net Vol Flow Rate 30 = ED: Net Vol Inventory 32 = ED: Net Vol Inventory 33 = API: CTL 46 = Raw Tube Frequency 47 = Drive Gain 48 = Case Temperature 49 = LPO Amplitude 50 = RPO Amplitude 51 = Board Temperature 54 = NA 55 = Ext. Input Pressure 54 = Gas Std Vol Flow 63 = Gas Std Vol Flow 63 = Gas Std Vol Flow 64 = Gat Std Vol Inventory 69 = Live Zero 251 = None
21	LDO_VAR_3_CODE	Zeigt die Variable des Codes auf dem lokalen Bedieninterface an	ENUM	Unsigned16 (2)		S	Ja	5	5	R/W (belie big)	Identisch mit LDO_VAR_2_ CODE
22	LDO_VAR_4_CODE	Zeigt die Variable des Codes auf dem lokalen Bedieninterface an	ENUM	Unsigned16 (2)		S	Ja	6	6	R/W (belie big)	Identisch mit LDO_VAR_2_CODE
23	LDO_VAR_5_CODE	Zeigt die Variable des Codes auf dem lokalen Bedieninterface an	ENUM	Unsigned16 (2)		S	Ja	3	3	R/W (belie big)	Identisch mit LDO_VAR_2_CODE

Tabelle B-10. LOCAL DISPLAY Transducer Block Parameter (Fortsetzung)

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff	Liste der Werte
24	LDO_VAR_6_CODE	Zeigt die Variable des Codes auf dem lokalen Bedieninterface an	ENUM	Unsigned16 (2)		S	Ja	1	1	R/W (belie big)	Identisch mit LDO_VAR_2_CODE
25	LDO_VAR_7_CODE	Zeigt die Variable des Codes auf dem lokalen Bedieninterface an	ENUM	Unsigned16 (2)		S	Ja	251	251	R/W (belie big)	Identisch mit LDO_VAR_2_CODE
26	LDO_VAR_8_CODE	Zeigt die Variable des Codes auf dem lokalen Bedieninterface an	ENUM	Unsigned16 (2)		S	Ja	251	251	R/W (belie big)	Identisch mit LDO_VAR_2_CODE
27	LDO_VAR_9_CODE	Zeigt die Variable des Codes auf dem lokalen Bedieninterface an	ENUM	Unsigned16 (2)		S	Ja	251	251	R/W (belie big)	Identisch mit LDO_VAR_2_CODE
28	LDO_VAR_10_CODE	Zeigt die Variable des Codes auf dem lokalen	ENUM	Unsigned16 (2)		S	Ja	251	251	R/W (belie	Identisch mit LDO_VAR_2_CODE
29	LDO_VAR_11_CODE	Zeigt die Variable des Codes auf dem lokalen	ENUM	Unsigned16 (2)		S	Ja	251	251	R/W (belie	Identisch mit LDO_VAR_2_CODE
30	LDO_VAR_12_CODE	Zeigt die Variable des Codes auf dem lokalen	ENUM	Unsigned16 (2)		S	Ja	251	251	R/W (belie	Identisch mit LDO_VAR_2_CODE
31	LDO_VAR_13_CODE	Zeigt die Variable des Codes auf dem lokalen	ENUM	Unsigned16		S	Ja	251	251	R/W (belie	Identisch mit LDO_VAR_2_CODE
32	LDO_VAR_14_CODE	Zeigt die Variable des Codes auf dem lokalen	ENUM	Unsigned16		S	Ja	251	251	R/W (belie	Identisch mit LDO_VAR_2_CODE
33	LDO_VAR_15_CODE	Zeigt die Variable des Codes auf dem lokalen Bedieninterface ans	ENUM	Unsigned16		S	Ja	251	251	R/W (belie big)	Identisch mit LDO_VAR_2_CODE
34	FBUS_UI_ProcVarIndex	Prozessvariablen- Code	ENUM	Unsigned16 (2)		S	Ja	0	0	R/W (belie big)	Identisch mit LDO_VAR_2_CODE
35	UI_NumDecimals	Die Anzahl der Stellen, die rechts vom Komma (Dezimalpunkt) für die Prozessvariable, die mit Index 34 aus- gewählt wurde, angezeigt werden sollen.	VARIABL E	Unsigned16 (2)		S	Ja	4	4	R/W (belie big)	0 bis 5
36	UI_UpdatePeriodmsec	Die Periode in Milli- sekunden, in welcher das Display aktuali- siert wird	VARIABL E	Unsigned16 (2)		S	Ja	200	200	R/W (belie big)	100 bis 10000
37	UI_EnableStatusLedBlinking	Blinken der Bedienin- terface-Status-LED aktivieren/deaktivieren	ENUM	Unsigned16 (2)		S	Ja	1	1	R/W (belie big)	0 = Disable 1 = Enable
38	UI_EnableAlarmPassword	Alarmbildschirm-Pass- wort auf dem Bedieninterface aktivieren/deaktivieren	ENUM	Unsigned16 (2)		S	Ja	0	0	R/W (belie big)	0 = Disable 1 = Enable

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
	Standard-FF-Parameter				
0	BLOCK_STRUCTURE				
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	XD_ERROR	1		1	
	Bedieninterface				
8	EN_LDO_TOT_RESET				2
9	EN_LDO_TOT_START_STOP				2
10	EN_LDO_AUTO_SCROLL				2
11	EN_LDO_OFFLINE_MENU				2
12	EN_LDO_OFFLINE_PWD				2
13	EN_LDO_ALARM_MENU				2
14	EN_LDO_ACK_ALL_ALARMS				2
15	LDO_OFFLINE_PWD		2		
16	LDO_SCROLL_RATE				2
17	LDO_BACKLIGHT_ON				2
18	UI_Language				2
19	LDO_VAR_1_CODE				2
20	LDO_VAR_2_CODE				2
21	LDO_VAR_3_CODE				2
22	LDO_VAR_4_CODE				2
23	LDO_VAR_5_CODE				2
24	LDO_VAR_6_CODE				2
25	LDO_VAR_7_CODE				2
26	LDO_VAR_8_CODE				2
27	LDO_VAR_9_CODE				2
28	LDO_VAR_10_CODE				2
29	LDO_VAR_11_CODE				2
30	LDO_VAR_12_CODE				2
31	LDO_VAR_13_CODE				2
32	LDO_VAR_14_CODE				2
33	LDO_VAR_15_CODE				2
34	FBUS_UI_ProcVarIndex				2
35	UI_NumDecimals				2
36	UI_UpdatePeriodmsec				2
37	UI_EnableStatusLedBlinking				2
38	UI_EnableAlarmPassword				2
	Summe	9	4	9	65

Tabelle B-11. LOCAL DISPLAY Transducer Block Anzeigen

B.7 API Block Parameter

Nachfolgend finden Sie die Parameter (Tabelle B-12) und Anzeigen (Tabelle B-13) für den API Transducer Block.

Tabelle B-12. API Block Parameter

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff (MODE_BLK)	Liste der Werte
	Standard-FF-Parameter										
0	BLOCK_STRUCTURE	Anfang des Transdu- cer Blocks	VARIABL E	DS_64(5)	keine Angabe	S		keine Angab e		R/W (OOS oder Auto)	keine Angabe
1	ST_REV	Der Revisionsstand der Festdaten des zu- gehörigen Function Blocks. Inkrementiert bei jeder Änderung des Festdatenspeichers.	VARIABL E	Unsigned16 (2)	keine Angabe	S		0		R	keine Angabe
2	TAG_DESC	Die Anwenderbesch- reibung für die gewünschte An- wendung des Blocks.	STRING	OCTET STRING (32)	keine Angabe	S	Ja	Leerzei chen		R/W (OOS oder Auto)	Beliebige 32 Zeichen
3	STRATEGY	Das Feld "Strategy" kann zur Identifi- zierung von Blockgruppen ver- wendet werden. Diese Daten werden nicht durch den Block ge- prüft oder verarbeitet.	VARIABL E	Unsigned16 (2)	keine Angabe	S	Ja	0	0	R/W (OOS oder Auto)	keine Angabe
4	ALERT_KEY	Die Kennnummer der Anlage. Diese Infor- mation wird vom Host zur Sortierung von Alarmen usw. verwendet.	VARIABL E	Unsigned8 (1)	keine Angabe	S	Ja	0	1	R/W (OOS oder Auto)	1 bis 255
5	MODE_BLK	Istwert-, Sollwert-, zu- gelassener – und normaler Modus des Blocks.	RECORD	DS-69 (4)	keine Angabe	mix	Ja	Auto	01	R/W (OOS oder Auto)	Siehe Abschnitt 2/6 von FF-891
6	BLOCK_ERR	Dieser Parameter zeigt den Status der Störung entsprechend der Hardware- oder Software-Kom- ponenten des jeweiligen Blocks.	STRING	BIT STRING (2)	keine Angabe	D/20		-		R	Siehe Abschnitt 4.8 von FF-903
7	XD_ERROR	Wird verwendet für alle Konfigurations-, Hard- ware-, Verdrahtungs- oder Systemfehler im Block.	VARIABL E	Unsigned8 (1)	keine Angabe	D		-		R	18 = Process Error 19 = Configuration Error 20 = Electronics Failure Carriage Return (CR) 21 = Sensor Failure
	API-Prozessvariablen										
8	API_Corr_Density	Temperaturkorrigierte Dichte	VARIABL E	DS-65 (5)	R-0325- 326	D/20		-		R	keine Angabe
9	API_Corr_Vol_Flow	Temperaturkorrigier- ter (Standard-) Volumendurchfluss	VARIABL E	DS-65 (5)	R-0331- 332	D/20		-		R	keine Angabe
10	API_Ave_Corr_Density	Batch-gewichteter Dichte-Mittelwert	VARIABL E	DS-65 (5)	R-0337- 338	D/20		-		R	keine Angabe
11	API_Ave_Corr_Temp	Batch-gewichteter Temperatur-Mittelwert	VARIABL E	DS-65 (5)	R-339- 340	D/20		-		R	keine Angabe

Tabelle B-12.	API Block Parameter	(Fortsetzung)
---------------	---------------------	---------------

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff (MODE_BLK)	Liste der Werte
12	API_CTL	CTL	VARIABL E	DS-65 (5)	R-0329- 330	D/20		-		R	keine Angabe
13	API_Corr_Vol_Total	Summenzähler des temperaturkorrigierten (Standard-) Volumens	VARIABL E	DS-65 (5)	R-0333- 0334	D/20		-		R	keine Angabe
14	API_Corr_Vol_Inv	Gesamtzähler des temperaturkorrigierten (Standard) Volumens	VARIABL E	DS-65 (5)	R-0335- 336	D/20		-		R	keine Angabe
15	API_Reset_Vol_Total	API-Referenzvolumen- zähler zurücksetzen	VARIABL E	DS-65 (5)	C-0058	-	Ja ⁽¹⁾	-	0	R/W (belie big)	Wert ist Teil von DS-66 0 = No effect 1 = Reset
	API-Einstellungsdaten										
16	EN_API	API aktivieren/deaktivieren	ENUM	Unsigned16 (2)	C-72	S	Ja	0	0	R/W (OOS)	0 = disabled 1 = enabled
17	API_Ref_Temp	API-Referenztem- peratur	VARIABL E	FLOAT (4)	R-0319- 0320	S	Ja ⁽¹⁾	15	15,0	R/W (OOS)	
18	API_TEC	API-Wärmeausdeh- nungskoeffizient	VARIABL E	FLOAT (4)	R-0323- 0324	S	Ja ⁽¹⁾	0,001	0,001	R/W (OOS)	
19	API_Table_Type	API 2540 CTL Tabellentyp	ENUM	Unsigned16 (2)	R-0351	S	Ja ⁽¹⁾	81	81	R/W (OOS)	$\begin{array}{l} 17 = \text{Table 5A} \\ 18 = \text{Table 5B} \\ 19 = \text{Table 5D} \\ 36 = \text{Table 6C} \\ 49 = \text{Table 23A} \\ 50 = \text{Table 23B} \\ 51 = \text{Table 23D} \\ 68 = \text{Table 24C} \\ 81 = \text{Table 53A} \\ 82 = \text{Table 53B} \\ 83 = \text{Table 53D} \\ 100 = \text{Table 54C} \end{array}$
20	API_FEATURE_KEY	Aktive Funktionen	STRING	BIT STRING (2)		S		-		R	0x0000 = standard 0x0800 = Meter Verifi. 0x0080 = PID (Not Applicable) 0x0800 = Enh. Density 0x0010 = API
21	SNS_ResetAPIGSVInv	API/GSV Gesamtzäh- ler zurücksetzen	Methode	Unsigned16 (2)	C-0194	S	Ja ⁽¹⁾	0	0	R/W (belie big)	0 = No effect 1 = Reset

Tabelle B-12.	API Block Parameter	(Fortsetzung))
---------------	----------------------------	---------------	---

OD-Index	Parameter-Mnemonik	Definition	Meldung styp	Datentyp/ Struktur	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff (MODE_BLK)	Liste der Werte
22	API_TEMPERATURE_U NITS	Temperatureinheit	ENUM	Unsigned16 (2)	R-0041	S		C°		R	1000 = K 1001 = Deg C 1002 = Deg F 1003 = Deg R
23	API_DENSITY_UNITS	Dichteeinheit	ENUM	Unsigned16 (2)	R-0040	S		g/cm ³		R	1097 = kg/m3 1100 = g/cm3 1103 = kg/L 1104 = g/ml 1105 = g/L 1106 = lb/in3 1107 = lb/ft3 1108 = lb/gal 1109 = Ston/yd3 1113 = DegAPl 1114 = SGU
24	API_VOL_FLOW_UNITS	Standard- oder Spezi- al-Volumendurchfluss einheit	ENUM	Unsigned16 (2)	R-0042	S		1/s		R	1347 = m3/s 1348 = m3/min 1349 = m3/hr 1350 = m3/day 1351 = L/s 1352 = L/min 1353 = L/hr 1355 = Ml/day 1356 = CFS 1357 = CFM 1358 = CFH 1359 = ft3/day / Standard cubic ft. per day 1362 = gal/s 1363 = GPM 1364 = gal/hour 1365 = gal/day 1366 = Mgal/day 1367 = ImpGal/s 1368 = ImpGal/min 1379 = bbl/s 1372 = bbl/min 1373 = bbl/hr 1374 = bbl/day 1631 = barrel (US Beer) per hour 1634 = barrel (US Beer) per minute 1634 = barrel (US Beer) per minute 1634 = barrel (US Beer) per minute 1634 = barrel (US Beer) per Second 253 = Special units

(1) Kann nur geschrieben werden, wenn die Mineralölmessung (API) aktiviert ist.

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
	Standard-FF-Parameter				
0	BLOCK_STRUCTURE				
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	XD_ERROR	1		1	
	API-Prozessvariablen				
8	API_Corr_Density	5		5	
9	API_Corr_Vol_Flow	5		5	
10	API_Ave_Corr_Density	5		5	
11	API_Ave_Corr_Temp	5		5	
12	API_CTL	5		5	
13	API_Corr_Vol_Total	5		5	
14	API_Corr_Vol_Inv	5		5	
15	API_Reset_Vol_Total		2		
	API-Einstellungsdaten				
16	EN_API				2
17	API_Ref_Temp				4
18	API_TEC				4
19	API_Table_Type				2
20	API_FEATURE_KEY				2
21	SNS_ResetAPIGSVInv		2		
22	API_TEMPERATURE_UNITS		2		
23	API_DENSITY_UNITS		2		
24	API_VOL_FLOW_UNITS		2		
	Summe	44	12	44	19

Tabelle B-13. API Transducer Block Anzeigen

Modell 2700	Transducer	Blocks -	Referenz
-------------	------------	----------	----------

B.8 CONCENTRATION MEASUREMENT Transducer Block Parameter

Nachfolgend finden Sie die Parameter (Tabelle B-14) und Anzeigen (Tabelle B-15) für den CONCENTRATION MEASUREMENT Transducer Block.

Tabelle B-14. CONCENTRATION MEASUREMENT Transducer Block Parameter

ex				Datentyp/	s-Register	er/Rate (HZ)	igen zu CFF	gestellter Wert	elwert	(MODE_BLK)	
OD-Ind	Parameter-Mnemonik	Definition	Meldungs typ	Struktur (Größe in Byte)	Modbu	Speich	Hinzufi	Voreinç	Beispie	Zugriff	Liste der Werte
	Standard-FF-Parameter										
0	BLOCK_STRUCTURE	Anfang des Transducer Blocks	VARIABLE	DS_64 (5)	keine Angabe	S		keine Angabe		R/W (OOS oder Auto)	keine Angabe
1	ST_REV	Der Revisionsstand der Festdaten des zugehöri- gen Function Blocks. Inkrementiert bei jeder Änderung des Festdatenspeichers.	VARIABLE	Unsigned16 (2)	keine Angabe	S		0		R	keine Angabe
2	TAG_DESC	Die Anwenderbesch- reibung für die gewünschte Anwendung des Blocks.	STRING	OCTET STRING (32)	keine Angabe	S	Ja	Leerzeic hen		R/W (OOS oder Auto)	Beliebige 32 Zeichen
3	STRATEGY	Das Feld "Strategy" kann zur Identifizierung von Blockgruppen verwendet werden. Diese Daten wer- den nicht durch den Block geprüft oder verarbeitet.	VARIABLE	Unsigned16 (2)	keine Angabe	S	Ja	0	0	R/W (OOS oder Auto)	keine Angabe
4	ALERT_KEY	Die Kennnummer der Anlage. Diese Informa- tion wird vom Host zur Sortierung von Alarmen usw. verwendet.	VARIABLE	Unsigned8 (1)	keine Angabe	S	Ja	0	1	R/W (OOS oder Auto)	1 bis 255
5	MODE_BLK	Istwert-, Sollwert-, zu- gelassener – und normaler Modus des Blocks.	RECORD	DS-69 (4)	keine Angabe	mix	Ja	Auto	01	R/W (OOS oder Auto)	Siehe Abschnitt 2/6 von FF-891
6	BLOCK_ERR	Dieser Parameter zeigt den Status der Störung entsprechend der Hard- ware- oder Software-Komponenten des jeweiligen Blocks.	STRING	BIT String (2)	keine Angabe	D/20		-		R	Siehe Abschnitt 4.8 von FF-903
7	XD_ERROR	Wird verwendet für alle Konfigurations-, Hard- ware-, Verdrahtungs- oder Systemfehler im Block.	VARIABLE	Unsigned8 (1)		D		-		R	18 = Process Error 19 = Configuration Error 20 = Electronics Failure Carriage Return (CR) 21 = Sensor Failure
	KM-Prozessvariablen	ſ				1	1		1	1	
8	CM_Ref_Dens	Dichte bei Referenz	VARIABLE	DS-65 (5)	R-963	D/20		-		R	keine Angabe
9	CM_Spec_Grav	Dichte (feste Einheiten für die spezifische Dichte)	VARIABLE	DS-65 (5)	R-965	D/20		-		R	keine Angabe
10	CM_Std_Vol_Flow	Standard-Vo- lumendurchfluss	VARIABLE	DS-65 (5)	R-967	D/20		-		R	keine Angabe
11	CM_Net_Mass_Flow	Netto-Massendurchfluss	VARIABLE	DS-65 (5)	R-973	D/20		-		R	keine Angabe
12	CM_Net_Vol_Flow	Netto-Volumendurchfluss	VARIABLE	DS-65 (5)	R-979	D/20		-		R	keine Angabe
13	CM_Conc	Konzentration	VARIABLE	DS-65 (5)	R-985	D/20		-		R	keine Angabe
14	CM_Baume	Dichte (feste Baume -Einheiten)	VARIABLE	DS-65 (5)	R-987	D/20		-		R	keine Angabe
	KM-Summenzähler					1	1				
15	CM_Std_Vol_Total	Standard-Volumenzähler	VARIABLE	DS-65 (5)	R-969	D/20		-		R	keine Angabe

Tabelle B-14. CONCENTRATION MEASUREMENT Transducer Block Parameter (Fortsetzur
--

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF		Voreingestellter Wert	Beispielwert	Zugriff (MODE_BLK)	Liste der Werte
16	CM_Std_Vol_Inv	Standardvolumen-Ge- samtzähler	VARIABLE	DS-65 (5)	R-971	D/20		-			R	keine Angabe
17	CM_Net_Mass_Total	Netto-Massenzähler	VARIABLE	DS-65 (5)	R-975	D/20		-			R	keine Angabe
18	CM_Net_Mass_Inv	Nettomassen-Gesamt- zähler	VARIABLE	DS-65 (5)	R-977	D/20		-			R	keine Angabe
19	CM_Net_Vol_Total	Netto-Volumenzähler	VARIABLE	DS-65 (5)	R-981	D/20		-			R	keine Angabe
20	CM_Net_Vol_Inv	Nettovolumen-Gesamt- zähler	VARIABLE	DS-65 (5)	R-983	D/20		-			R	keine Angabe
21	CM_Reset_Std_Vol_ Total	KM-Standard-Volumen- zähler zurücksetzen	VARIABLE	DS-66 (2)	C-59	-		0			R/W (belieb ig)	Wert ist Teil von DS-66 1 = Reset
22	CM_Reset_Net_Mass_ Total	KM-Nettomassenzähler zurücksetzen	VARIABLE	DS-66 (2)	C-60	-		0			R/W (belieb ig)	Wert ist Teil von DS-66 1 = Reset
23	CM_Reset_Net_Vol_ Total	KM-Nettovolumenzähler zurücksetzen	VARIABLE	DS-66 (2)	C-61	-		0			R/W (belieb ig)	Wert ist Teil von DS-66 1 = Reset
	KM-Einstelldaten											
24	EN_CM	Konzentrationsmessung aktivieren/deaktivieren	ENUM	Unsigned16 (2)		S	Ja ⁽¹⁾	0		0	R/W (OOS)	0x0000 = disabled 0x0001 = enabled
25	CM_Curve_Lock	Konzentrationsmes- sungstabellen sperren	ENUM	Unsigned16 (2)	C-85	S	Ja ⁽¹⁾	0		0	R/W (OOS)	0x0000 = not locked 0x0001 = locked
26	CM_Mode	Konzentrationsmessungs- modus	ENUM	Unsigned16 (2)	R-524	S	Ja ⁽¹⁾	0		0	R/W (OOS)	$\begin{array}{l} 0 = \text{None} \\ 1 = \text{Dens} @ \text{Ref Temp} \\ 2 = \text{Specific Gravity} \\ 3 = \text{Mass Conc (Dens)} \\ 4 = \text{Mass Conc (SG)} \\ 5 = \text{Volume Conc} \\ (\text{Dens}) \\ 6 = \text{Volume Conc} \\ (\text{SG}) \\ 7 = \text{Concentration} \\ (\text{Dens}) \\ 8 = \text{Concentration} \\ (\text{SG}) \end{array}$
27	CM_Active_Curve	Aktive Berechnungskurve	VARIABLE	Unsigned16 (2)	R-523	S	Ja ⁽¹⁾	0		0	R/W (belieb ig)	0 bis 5
28	CM_Curve_Index	Index Kurvenkonfigura- tion (n)	VARIABLE	Unsigned16 (2)		S	Ja ⁽¹⁾	0		0	R/W (belieb ig)	0 bis 5
29	CM_Temp_Index	Kurve _n Temperatur-Iso- therme-Index (x-Achse)	VARIABLE	Unsigned16 (2)		S	Ja ⁽¹⁾	0		0	R/W (belieb ig)	0 bis 5
30	CM_Conc_Index	Kurve, Konzentra- tions-Index (y-Achse)	VARIABLE	Unsigned16 (2)		S	Ja ⁽¹⁾	0		0	R/W (belieb ig)	0 bis 5
31	CM_Temp_ISO	Kurve _n (6x5) Tem- peratur-Isotherme _x Wert (x-Achse)	VARIABLE	FLOAT (4)	R-531	S	Ja ⁽¹⁾	0		0,0	R/W (OOS)	
32	CM_Dens_At_Temp_ ISO	$Kurve_n$ (6 x 5) Dichte bei Temperatur-Isotherme _x , Konzentration _y	VARIABLE	FLOAT (4)	R-533	S	Ja ⁽¹⁾	0		0,0	R/W (OOS)	
33	CM_Dens_At_Temp_ Coeff	Kurve _n (6 x 5) Koeffizient bei Temperatur-Isother- me _x , Konzentration _y	VARIABLE	FLOAT (4)	R-535	S	Ja (1)	0		0,0	R/W (OOS)	
34	CM_Conc_Label_55	Kurve _n (6x5) Konzentrati- on _y Wert (Kennzeichnung für y-Achse)	VARIABLE	FLOAT (4)	R-537	S	Ja ⁽¹⁾	0		0,0	R/W (OOS)	
35	CM_Dens_At_Conc	Kurve _n (5x1) Dichte bei Konzentration _y (bei Referenztemperatur)	VARIABLE	FLOAT (4)	R-539	S	Ja ⁽¹⁾	0		0,0	R/W (OOS)	

Tabelle B-14. CONCENTRATION MEASUREMENT Transducer Block Parameter (Fortsetzung)

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff (MODE_BLK)	Liste der Werte
36	CM_Dens_At_Conc_ Coeff	Kurve _n (5x1) Koeffizient bei Konzentration _y (bei Referenztemperatur)	VARIABLE	FLOAT (4)	R-541	S	Ja ⁽¹⁾	0	0,0	R/W (OOS)	
37	CM_Conc_Label_51	Kurve _n (5x1) Konzentrati- on _y Wert (y-Achse)	VARIABLE	FLOAT (4)	R-543	S	Ja ⁽¹⁾	0	0,0	R/W (OOS)	
38	CM_Ref_Temp	Kurve _n Referenztemperatur	VARIABLE	FLOAT (4)	R-545	S	Ja ⁽¹⁾	0	0,0	R/W (OOS)	
39	CM_SG_Water_Ref_ Temp	Kurve _n spez. Gewicht Wasser Referenztemperatur	VARIABLE	FLOAT (4)	R-547	S	Ja ⁽¹⁾	0	4,0	R/W (OOS)	
40	CM_SG_Water_Ref_ Dens	Kurve _n spez. Gewicht Wasser Referenzdichte	VARIABLE	FLOAT (4)	R-549	S	Ja ⁽¹⁾	0	1,0	R/W (OOS)	
41	CM_Slope_Trim	Kurve _n Steigung abgleichen	VARIABLE	FLOAT (4)	R-551	S	Ja ⁽¹⁾	0	1,0	R/W (OOS)	Sollte >0,8 akzeptieren
42	CM_Slope_Offset	Kurve _n Offset abgleichen	VARIABLE	FLOAT (4)	R-553	S	Ja ⁽¹⁾	0	0,0	R/W (OOS)	
43	CM_Extrap_Alarm_ Limit	Kurve _n Extrapolation Alar- mgrenze: %	VARIABLE	FLOAT (4)	R-555	S	Ja ⁽¹⁾	5	5,0	R/W (belieb ig)	
44	CM_Curve_Name	Kurve _n ASCII-String – Name der Kurve – 12 Zeichen unterstützt	VARIABLE	VISIBLE STRING (12)	R-557- 562	S	Ja ⁽¹⁾	"leere Kurve"	"leere Kurve"	R/W (belieb ig)	
45	CM_Max_Fit_Order	Max. passende Anwei- sung für 5x5 Kurven	VARIABLE	Unsigned16 (2)	R-564	S	Ja ⁽¹⁾	3	3	R/W (OOS)	2, 3, 4, 5 (kann nur Listenwerte akzeptieren)
46	CM_Fit_Results	Kurve _n Kurve Passergebnis	ENUM	Unsigned16 (2)	R-569	S		0		R	0 = Good Carriage return (CR) 1 = Poor Carriage return (CR) 2 = Failed Carriage return (CR) 3 = Empty
47	CM_Conc_Unit_Code	Kurve _n Konzentrations- einheiten-Code	ENUM	Unsigned16 (2)	R-570	S	Ja ⁽¹⁾	1343	1343	R/W (OOS)	1110 = Grad Twaddell 1426= Degrees Brix 1111 = Deg Baume (heavy) 1112= Deg Baume (light) 1343=% sol/wt 1344=% sol/vol 1427= Degrees Balling 1428= Proof Per Volume 1429 = Proof Per mass 1346 = Procent Plato
48	CM_Expected_Acc	Kurve _n Kurvenpassung gemäß der erwarteten Genauigkeit	VARIABLE	FLOAT (4)	R-571	S		0		R	
49	CM_FEATURE_KEY	Aktive Funktionen	STRING	BIT STRING (2)	R-5000	S		-		R	0x0000 = standard 0x0800 = Meter Verifi. 0x0808 = PID (Not Applicable) 0x0800 = Enh. Density 0x0010 = API
	Ergänzungen in v4.0					1	1				
50	SNS_ResetCMVolInv	KM-Volumen-Gesamtzäh- ler zurücksetzen	Methode	Unsigned16 (2)	C-0195	S	Ja ⁽¹⁾	0	0	R/W (belieb ig)	0 = No effect 1 = Reset

labelle B-14. CUNCENTRATION MEASUREMENT Transducer Block Parameter (Fortsetzun
--

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff (MODE_BLK)	Liste der Werte
51	SNS_ResetCMNet MassInv	KM-Nettomassen-Ge- samtzähler zurücksetzen	Methode	Unsigned16 (2)	C-0196	S	Ja ⁽¹⁾	0	0	R/W (belieb ig)	0 = No effect 1 = Reset
52	SNS_ ResetCMNetVolInv	KM-Nettovolumen-Ge- samtzähler zurücksetzen	Methode	Unsigned16 (2)	C-0197	S	Ja ⁽¹⁾	0	0	R/W (belieb ig)	0 = No effect 1 = Reset
53	SNS_CM_ResetFlag	Alle Konzentrationsmes- sungs-Kurveninformation en zurücksetzen	Methode	Unsigned16 (2)	C-249	S	Ja ⁽¹⁾	0	0	R/W (OOS)	1 = Reset
54	SNS_CM_EnableDens LowExtrap	Extrapolationsalarm für niedrige Dichte aktivieren	ENUM	Unsigned16 (2)	C-250	S	Ja ⁽¹⁾	0	1	R/W (belieb ig)	1 = Enable
55	SNS_CM_EnableDens HighExtrap	Extrapolationsalarm für hohe Dichte aktivieren	ENUM	Unsigned16 (2)	C-251	S	Ja ⁽¹⁾	0	1	R/W (belieb ig)	1 = Enable
56	SNS_CM_EnableTemp LowExtrap	Extrapolationsalarm für niedrige Temperatur aktivieren	ENUM	Unsigned16 (2)	C-252	S	Ja ⁽¹⁾	0	1	R/W (belieb ig)	1 = Enable
57	SNS_CM_EnableTemp HighExtrap	Extrapolationsalarm für hohe Temperatur aktivieren	ENUM	Unsigned16 (2)	C-253	S	Ja ⁽¹⁾	0	1	R/W (belieb ig)	1 = Enable
	Ergänzungen in v6.0										
58	CM_TEMPERATURE_ UNITS	Temperatureinheit	ENUM	Unsigned16 (2)	R-0041	S		C°		R	1000 = K 1001 = Deg C 1002 = Deg F 1003 = Deg R
59	CM_DENSITY_UNITS	Dichteeinheit	ENUM	Unsigned16 (2)	R-0040	S		g/cm ³		R	1097 = kg/m3 1100 = g/cm3 1103 = kg/L 1104 = g/ml 1105 = g/L 1106 = lb/in3 1107 = lb/ft3 1108 = lb/gal 1109 = Ston/yd3 1113 = DegAPl 1114 = SGU

Tabelle B-14.	CONCENTRATION MEASUREMENT Transducer Block Parameter	(Fortsetzung)
---------------	--	---------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur (Größe in Byte)	Modbus-Register	Speicher/Rate (HZ)	Hinzufügen zu CFF	Voreingestellter Wert	Beispielwert	Zugriff (MODE_BLK)	Liste der Werte
60	CM_VOL_FLOW_ UNITS	Standard- oder Spezial-Vo- lumendurchflusseinheit	ENUM	Unsigned16 (2)	R- 0042	S		I/s		R	1347 = m3/s 1348 = m3/min 1349 = m3/hr 1350 = m3/day 1351 = L/s 1352 = L/min 1353 = L/hr 1355 = Ml/day 1356 = CFS 1357 = CFM 1358 = CFH 1359 = ft3/day / Standard cubic ft. pro Tag 1362 = gal/s 1363 = GPM 1364 = gal/hour 1365 = gal/day 1366 = Mgal/day 1367 = ImpGal/s 1368 = ImpGal/min 1369 = ImpGal/min 1369 = ImpGal/min 1372 = bbl/min 1372 = bbl/min 1373 = bbl/hr 1374 = bbl/day 1631 = barrel (US Beer) per hour 1634 = barrel (US Beer) per minute 1634 = barrel (US Beer) per second 253 = Special units
	Ergänzungen in v7.0										
61	CM_Increment_Curve	Aktive Kurve zur nächsten inkrementieren.	VARIABLE	DS-66 (2)	-	-		0		R/W (belieb ig)	Wert ist Teil von DS-66 0 = None 1 = Increment

(1) Kann nur geschrieben werden, wenn die Mineralölmessung (API) aktiviert ist.

Tabelle B-15. CONCENTRATION MEASUREMENT Transducer Block Anzeigen

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
	Standard-FF-Parameter				
0	BLOCK_STRUCTURE				
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	

Betrieb

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
7	XD_ERROR	1		1	
	KM-Prozessvariablen				
8	CM_Ref_Dens	5		5	
9	CM_Spec_Grav	5		5	
10	CM_Std_Vol_Flow	5		5	
11	CM_Net_Mass_Flow	5		5	
12	CM_Net_Vol_Flow	5		5	
13	CM_Conc	5		5	
14	CM_Baume	5		5	
	KM-Zähler				
15	CM_Std_Vol_Total	5		5	
16	CM_Std_Vol_Inv	5		5	
17	CM_Net_Mass_Total	5		5	
18	CM_Net_Mass_Inv	5		5	
19	CM_Net_Vol_Total	5		5	
20	CM_Net_Vol_Inv	5		5	
21	CM_Reset_Std_Vol_Total		2		
22	CM_Reset_Net_Mass_Total		2		
23	CM_Reset_Net_Vol_Total		2		
	KM-Einstelldaten				
24	EN_CM				2
25	CM_CURVE_LOCK				2
26	CM_Mode				2
27	CM_Active_Curve				2
28	CM_Curve_Index				2
29	CM_Temp_Index				2
30	CM_Conc_Index				2
31	CM_Temp_ISO				4
32	CM_Dens_At_Temp_ISO				4
33	CM_Dens_At_Temp_Coeff				4
34	CM_Conc_Label_55				4
35	CM_Dens_At_Conc				4
36	CM_Dens_At_Conc_Coeff				4
37	CM_Conc_Label_51				4
38	CM_Ref_Temp				4
39	CM_SG_Water_Ref_Temp				4
40	CM_SG_Water_Ref_Dens				4
41	CM_Slope_Trim				4
42	CM_Slope_Offset				4
43	CM_Extrap_Alarm_Limit				4
44	CM_Curve_Name				12
45	CM_Max_Fit_Order				2
46	CM_Fit_Results			2	
47	CM_Conc_Unit_Code		2		
48	CM_Expected_Acc				4
49	CM_FEATURE_KEY				2
	Ergänzungen in v4.0	1	1	1	L

Tabelle B-15. CONCENTRATION MEASUREMENT Transducer Block Anzeigen (Fortsetzung)

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 4
50	SNS_ResetCMVollnv		2		
51	SNS_ResetCMNetMassInv		2		
52	SNS_ResetCMNetVollnv		2		
53	SNS_CM_ResetFlag		2		
54	SNS_CM_EnableDensLowExtrap				2
55	SNS_CM_EnableDensHighExtrap				2
56	SNS_CM_EnableTempLowExtrap				2
57	SNS_CM_EnableTempHighExtrap				2
	Ergänzungen in v6.0				
58	CM_TEMPERATURE_UNITS		2		
59	CM_DENSITY_UNITS		2		
60	CM_VOL_FLOW_UNITS		2		
	Ergänzungen in v6.0				
61	CM_Increment_Curve		2		
	Summe	74	26	76	99

Tabelle B-15. CONCENTRATION MEASUREMENT Transducer Block Anzeigen (Fortsetzung)

Modell 2700 Transducer Blocks - Referenz
Anhang C Modell 2700 Resource Block – Referenz

C.1 Resource Block Parameter

Nachfolgend finden Sie die Parameter (Tabelle C-1) und Anzeigen (Tabelle C-2) für den Resource Block.

Tabelle C-1.	Resource	Block	Parameter
--------------	----------	-------	-----------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- ße	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
	Standard-FF-Parameter		•							
0	BLOCK_STRUCTURE	Anfang des Resource Blocks	VARIABLE	DS_64	5	S	keine Anga be	R/W	keine Angabe	1.0
1	ST_REV	Der Revisionsstand der Festdaten des zugehörigen Function Blocks. Inkremen- tiert bei jeder Änderung des Festdatenspeichers.	VARIABLE	Unsigned16	2	S	0	R	keine Angabe	1.0
2	TAG_DESC	Die Anwenderbesch- reibung für die gewünschte Anwendung des Blocks.	STRING	OCTET STRING	32	S	Leer- zeich en	R/W	Beliebige 32 Zeichen	1.0
3	STRATEGY	Das Feld "Strategy" kann zur Identifizierung von Blockgruppen verwendet werden. Diese Daten wer- den nicht durch den Block geprüft oder verarbeitet.	VARIABLE	Unsigned16	2	S	0	R/W	keine Angabe	1.0
4	ALERT_KEY	Die Kennnummer der Anlage. Diese Information wird vom Host zur Sor- tierung von Alarmen usw. verwendet.	VARIABLE	Unsigned8	1	S	0	R/W	0 bis 255	1.0
5	MODE_BLK	Istwert-, Sollwert-, zugelas- sener – und normaler Modus des Blocks.	RECORD	DS-69	4	mix	Auto	R/W	Siehe Abschnitt 2.6 von FF-891	1.0
6	BLOCK_ERR	Dieser Parameter zeigt den Status der Störung ent- sprechend der Hardware- oder Software-Kom- ponenten des jeweiligen Blocks.	STRING	BIT STRING	2	D/20	-	R	bit 0 = Other bit 1 = Block Config Error bit 3 = Simulate Active bit 6 = Maintenance Soon bit 7 = Input Failure bit 8 = Output Failure bit 9 = Memory Failure bit 11 = Lost NV Data bit 13 = Maintenance Now bit 15 = Out of Service	1.0
7	RS_STATE	Enthält den Betriebsstatus der Function Block Anwendung.	VARIABLE	Unsigned8	1	D/20	-	R	$\begin{array}{l} 0 = \text{Invalid State} \\ 1 = \text{Start/Restart} \\ 2 = \text{Initialization} \\ 3 = \text{On-Line Linking} \\ 4 = \text{On-Line} \\ 5 = \text{Standby} \\ 6 = \text{Failure} \end{array}$	1.0
8	TEST_RW	Lese/Schreib-Testparame- ter – nur verwendet für Konformitätsprüfungen.	RECORD	DS-85	112	D/20	0	R		1.0

Tabelle C-1.	Resource	Block	Parameter	Fortsetzung
--------------	----------	-------	-----------	-------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- Be	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
9	DD_RESOURCE	String, der die Ressour- cen-Kennzeichnung identifiziert, welche die Gerätebeschreibung für die- se Ressource enthält.	STRING	OCTET STRING	32	S	Leer- zeich en	R	Beliebige 32 Zeichen	1.0
10	MANUFAC_ID	Kennnummer des Her- stellers – verwendet vom Interface zur Lokalisierung der DD-Datei für die Ressource.	ENUM	Unsigned32	4	S	0x00 0310	R	0x000310 = Micro Motion	1.0
11	DEV_TYPE	Modellnummer der Res- source – verwendet vom Interface zur Lokalisierung der DD-Datei für die Ressource.	ENUM	Unsigned16	2	S	0x20 00	R	0x2000 = 2700	1.0
12	DEV_REV ⁽¹⁾	Versionsnummer der Res- source – verwendet vom Interface zur Lokalisierung der DD-Datei für die Ressource.	VARIABLE	Unsigned8	1	S	4	R		1.0
13	DD_REV ⁽¹⁾	DD-Version der Ressource – verwendet vom Interface zur Lokalisierung der DD-Datei für die Ressource.	VARIABLE	Unsigned8	1	S	1	R		1.0
14	GRANT_DENY	Optionen zur Zugangssteu- erung des Host-Computers und dem lokalen Schaltpult für Betriebs, Einstellungs- und Alarmparameter des Blocks.	RECORD	DS-70	2	S	0,0	R/W		1.0
15	HARD_TYPES	Die verfügbaren Hardware- typen als Kanaltypen.	ENUM	Bit-String	2	S	0x80	R	0x80 = SCALAR_INPUT	1.0
16	RESTART	Ermöglicht einen manu- ellen Neustart. Verschiedene mögliche Stufen des Neustarts.	ENUM	Unsigned8	1	D	1	R/W	1 = Run 2 = Restart resource 3 = Restart with defaults 4 = Restart processor	1.0
17	FEATURES	Verwendet zur Anzeige der unterstützten Resource Block Optionen.	ENUM	Bit-String	2	S	0x10 0x20 0x40 0x80	R	0x0010 = SoftWriteLock 0x0020 = FailSafe 0x0040 = Report 0x0080 = Unicode	1.0
18	FEATURE_SEL	Verwendet zur Auswahl der Resource Block Optionen.	ENUM	Bit-String	2	S	0x10	R/W	0x0010 = SoftWriteLock 0x0020 = FailSafe 0x0040 = Report 0x0080 = Unicode	1.0
19	CYCLE_TYPE	Identifiziert die verfügbaren Block-Ausführungsmetho- den für diese Ressource.	ENUM	Bit-String	2	S	0x80 0x40	R	0x0080 = CycleScheduled 0x0040 = BlockComplete	1.0
20	CYCLE_SEL	Verwendet zur Auswahl der Block-Ausführungsmetho- den für diese Ressource.	ENUM	Bit-String	2	S	0	RW	0x0080 = CycleScheduled 0x0040 = BlockComplete	1.0
21	MIN_CYCLE_T	Zeitdauer des kürzest mög- lichen Zyklusintervalls der Ressource. Gemessen in 1/32 ms.	VARIABLE	Unsigned32	4	S	8000	R		1.0
22	MEMORY_SIZE	Verfügbarer Konfigurations- speicher der leeren Ressource in KBytes. Muss vor Versuch eines Downloads geprüft werden.	VARIABLE	Unsigned16	2	S	8	R		1.0

Tabelle C-1.	Resource	Block	Parameter	Fortsetzung
--------------	----------	-------	-----------	-------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- ße	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
23	NV_CYCLE_T	Kürzestes Zeitintervall in 1/32 ms, spezifiziert vom Hersteller zum Schreiben von Kopien der nichtflüch- tigen Parameter auf nichtflüchtige Speicher. Null bedeutet, die Parameter werden nicht automatisch kopiert. Am Ende von NV_CYCLE_TIME müssen nur die Parameter, die sich geändert haben (gemäß Herstellerdefinition) im NV- RAM aktualisiert werden	VARIABLE	Unsigned32	4	S	31,68 0,000	R		1.0
24	FREE_SPACE	Prozent des verfügbaren Speichers für weitere Konfiguration. Null in einer vorkonfigurierten Ressource.	VARIABLE	Float	4	D	-	R	0-100 Percent	1.0
25	FREE_TIME	Prozent der freien Block-Verarbeitungszeit für die Verarbeitung zusätz- licher Blocks.	VARIABLE	Float	4	D	-	R	0-100 Percent	1.0
26	SHED_RCAS	Zeitdauer in 1/32 ms, nach der die Schreibvorgånge an die Function Block RCas Speicheradressen aufgegeben werden. Verb- reitung von RCas sollte nie erfolgen, wenn SHED_RCAS = 0 ist.	VARIABLE	Unsigned32	4	S	6400 00	R/W		1.0
27	SHED_ROUT	Zeitdauer in 1/32 ms, nach der die Schreibvorgänge an die Function Block ROut Speicheradressen aufgegeben werden. Verb- reitung von Rout sollte nie erfolgen, wenn SHED_ROUT = 0 ist.	VARIABLE	Unsigned32	4	S	6400 00	R/W		1.0
28	FAULT_STATE	Bedingung, die bei Kommu- nikationsverlust an einen Output Block gesetzt wird, Störung weitergeleitet an einen Output Block oder einen physikalischen Kontakt. Wenn die Bedingung Störstatus ge- setzt ist, führen die Output Function Blocks ihre FSTA- TE Aktionen durch.	ENUM	Unsigned8	1	Ν	1	R	1 = Clear 2 = Active	1.0
29	SET_FSTATE	Ermöglicht die manuelle Auslösung der Största- tus-Bedingung durch Auswahl von Set.	ENUM	Unsigned8	1	D	1	R/W	1 = Off 2 = Set	1.0
30	CLR_FSTATE	Das Schreiben von Clear an diesen Parameter löscht den Geräte-Störstatus, wenn die Feldbedingung (falls eine solche vorliegt) gelöscht wurde.	ENUM	Unsigned8	1	D	1	R/W	1 = Off 2 = Set	1.0
31	MAX_NOTIFY	Maximale Anzahl unbestä- tigter, möglicher Mitteilungen.	VARIABLE	Unsigned8	1	S	5	R		1.0
32	LIM_NOTIFY	Maximal zulässige Anzahl unbestätigter Alarmmitteilungen.	VARIABLE	Unsigned8	1	S	5	R/W	0 to MAX_NOTIFY	1.0

RB-Referenz

Tabelle C-1.	Resource	Block	Parameter	Fortsetzung
--------------	----------	-------	-----------	-------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- ße	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
33	CONFIRM_TIME	Die Zeit in 1/32 ms, die die Ressource bis zur Empfangsbestätigung eines Berichts wartet, bevor sie einen neuen Versuch un- ternimmt. Neuversuch sollte nicht ausführbar sein wenn CONFIRM_TIME = 0 ist.	VARIABLE	Unsigned32	4	S	6400 00	R/W		1.0
34	WRITE_LOCK	Wenn gesperrt, sind keine- Schreibvorgänge erlaubt, außer um den Parameter WRITE_LOCK zu löschen. Block-Eingaben werden weiterhin aktualisiert.	ENUM	Unsigned8	1	S	1	R/W	1 = Unlocked 2 = Locked	1.0
35	UPDATE_EVT	Dieser Alarm wird bei einer Änderung der statischen Daten gesetzt.	RECORD	DS-73	1/4	D	-	R		1.0
36	BLOCK_ALM	Der Blockalarm wird für alle Konfigurations-, Hard- ware-, Verbindungs- oder Systemfehler im Block ver- wendet. Die Ursache des Alarms wird im Subco- de-Feld eingegeben. Der erste Alarm, der aktiv wird, setzt den Aktivstatus im Statusattribut. Sobald der nicht gemeldete Status durch den Alarmmeldevor- gang gelöscht ist, kann ein anderer Blockalarm gemeldet werden ohne den Aktivstatus zu löschen, wenn sich der Subcode geändert hat.	RECORD	DS-72	13	D	-	R/W		1.0
37	ALARM_SUM	Der aktuelle Alarmstatus, der unbestätigte Status, der nicht gemeldete Status und der deaktivierte Status der Alarme, die dem Function Block zugeordnet sind.	RECORD	DS-74	8	mix	-	R/W		1.0
38	ACK_OPTION	Auswahl, ob Alarme, die mit dem Block assoziiert sind, automatisch bestätigt werden.	ENUM	Bit-String	2	S	0	R/W	0 = Auto Ack Disabled 1 = Auto Ack Enabled	1.0
39	WRITE_PRI	Priorität des Alarms, der durch das Löschen der Sch- reibsperre gesetzt wird.	VARIABLE	Unsigned8	1	S	0	R/W	0 bis 15	1.0
40	WRITE_ALM	Dieser Alarm wird gesetzt, wenn der Schreibsper- ren-Parameter gelöscht wird.	RECORD	DS-72	1/3	D	-	R/W		1.0
41	ITK_VER	Hauptversionsnummer des Kompatibilitäts-Testfalls, verwendet bei der Zertifi- zierung dieses Geräts als austauschbar (intero- perable). Das Format und der Bereich der Versions- nummer werden durch Foundation Fieldbus definiert und überwachtg. Anmerkung: Der Wert die- ses Parameters ist Null (0), wenn das Gerät nicht von FF als austauschbar regist- riert wurde.	VARIABLE	Unsigned16	2	S	5	R		3.0
42	FD_VER	Ein Parameter, der dem Wert der Hauptversion der Field Diagnostics Spezifika- tion entspricht, nach der dieses Gerät entwickelt wurde.		Unsigned16	2	S	-	RO		7.0

Tabelle C-1.	Resource	Block	Parameter	Fortsetzung
--------------	----------	-------	-----------	-------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- ße	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
43	FD_FAIL_ACTIVE	Dieser Parameter gibt die Fehlerbedingungen an, die entsprechend der Auswahl für diese Kategorie als ak- tiv erkannt werden. Da es sich um einen Bit-String handelt, können mehrere Bedingungen angezeigt werden.		Bit-String	4	D		RO	0x00000001 = Check Function 0x0000002 = Calibration in Progress 0x0000008 = Sensor Simulation Active 0x00000010 = Slug Flow 0x00000020 = Meter Verification Aborted 0x00000040 = Meter Verification Failed 0x00000040 = PMeter Verification Failed 0x00000040 = PM: Temperature or Density Overrange 0x00000400 = Data Loss 0x00000400 = Data Loss 0x00000400 = Calibration Failure 0x00000400 = Calibration Failure 0x00002000 = Transmitter Not Characterized 0x00000000 = No Left Pickoff/Right Pickoff Signal 0x00020000 = Density Overrange 0x00000000 = No Sensor Communication Failure 0x00020000 = Sensor Communication Failure 0x00400000 = NV Memory Failure 0x00400000 = Sensor Communication Failure 0x	7.0
44	FD_OFFSPEC_ACTIVE	Dieser Parameter gibt die Fehlerbedingungen an, die entsprechend der Auswahl für diese Kategorie als ak- tiv erkannt werden. Da es sich um einen Bit-String handelt, können mehrere Bedingungen angezeigt werden.		Bit-String	4	D	-	RO	Identisch mit OD-Index 43	7.0
45	FD_MAINT_ACTIVE	Dieser Parameter gibt die Fehlerbedingungen an, die entsprechend der Auswahl für diese Kategorie als ak- tiv erkannt werden. Da es sich um einen Bit-String handelt, können mehrere Bedingungen angezeigt werden.		Bit-String	4	D	-	RO	Identisch mit OD-Index 43	7.0
46	FD_CHECK_ACTIVE	Dieser Parameter gibt die Fehlerbedingungen an, die entsprechend der Auswahl für diese Kategorie als ak- tiv erkannt werden. Da es sich um einen Bit-String handelt, können mehrere Bedingungen angezeigt werden.		Bit-String	4	D	-	RO	Identisch mit OD-Index 43	7.0

Tabelle C-1. Re	source Block	Parameter	Fortsetzung
-----------------	--------------	-----------	-------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- ße	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
47	FD_FAIL_MAP	Dieser Parameter ordnet Bedingungen zu, die für die- se Alarmkategorie als aktiv erkannt werden. Daher kann die gleiche Bedingung in allen, einigen oder keiner der 4 Alarmkategorien aktiv sein.		Bit-String	4	S	-	RW (OS/ AUTO)	Identisch mit OD-Index 43	7.0
48	FD_OFFSPEC_MAP	Dieser Parameter ordnet Bedingungen zu, die für die- se Alarmkategorie als aktiv erkannt werden. Daher kann die gleiche Bedingung in allen, einigen oder keiner der 4 Alarmkategorien aktiv sein.		Bit-String	4	S	-	RW (OS/ AUTO)	Identisch mit OD-Index 43	7.0
49	FD_MAINT_MAP	Dieser Parameter ordnet Bedingungen zu, die für die- se Alarmkategorie als aktiv erkannt werden. Daher kann die gleiche Bedingung in allen, einigen oder keiner der 4 Alarmkategorien aktiv sein.		Bit-String	4	S	-	RW (OS/ AUTO)	Identisch mit OD-Index 43	7.0
50	FD_CHECK_MAP	Dieser Parameter ordnet Bedingungen zu, die für die- se Alarmkategorie als aktiv erkannt werden. Daher kann die gleiche Bedingung in allen, einigen oder keiner der 4 Alarmkategorien aktiv sein.		Bit-String	4	S	-	RW (OS/ AUTO)	Identisch mit OD-Index 43	7.0
51	FD_FAIL_MASK	Mit diesem Parameter kann der Anwender eine einzelne oder mehrere Bedingungen, die in dieser Kategorie ak- tiv ist/sind, unterdrücken, damit diese nicht durch den Alarmparameter an den Host übermittelt wird/wer- den. Ein Bit mit dem Wert "1" maskiert eine Bedingung, d. h. es ver- hindert das Übermitteln einer Bedingung, und ein Bit mit dem Wert "0" demas- kiert eine Bedingung, d. h. es erlaubt das Übermitteln.		Bit-String	4	S	-	RW (OS/ AUTO)	Identisch mit OD-Index 43	7.0
52	FD_OFFSPEC_MASK	Mit diesem Parameter kann der Anwender eine einzelne oder mehrere Bedingungen, die in dieser Kategorie ak- tiv ist/sind, unterdrücken, damit diese nicht durch den Alarmparameter an den Host übermittelt wird/wer- den. Ein Bit mit dem Wert "1" maskiert eine Bedingung, d. h. es ver- hindert das Übermitteln einer Bedingung, und ein Bit mit dem Wert "0" demas- kiert eine Bedingung, d. h. es erlaubt das Übermitteln.		Bit-String	4	S	-	RW (OS/ AUTO)	Identisch mit OD-Index 43	7.0

Tabelle C-1.	Resource	Block	Parameter	Fortsetzung
--------------	----------	-------	-----------	-------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- ße	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
53	FD_MAINT_MASK	Mit diesem Parameter kann der Anwender eine einzelne oder mehrere Bedingungen, die in dieser Kategorie ak- tiv ist/sind, unterdrücken, damit diese nicht durch den Alarmparameter an den Host übermittelt wird/wer- den. Ein Bit mit dem Wert "1" maskiert eine Bedingung, d. h. es ver- hindert das Übermitteln einer Bedingung, und ein Bit mit dem Wert "0" demas- kiert eine Bedingung, d. h. es erlaubt das Übermitteln.		Bit-String	4	S	-	RW (OS/ AUTO)	Identisch mit OD-Index 43	7.0
54	FD_CHECK_MASK	Mit diesem Parameter kann der Anwender eine einzelne oder mehrere Bedingungen, die in dieser Kategorie ak- tiv ist/sind, unterdrücken, damit diese nicht durch den Alarmparameter an den Host übermittelt wird/wer- den. Ein Bit mit dem Wert "1" maskiert eine Bedingung, d. h. es ver- hindert das Übermitteln einer Bedingung, und ein Bit mit dem Wert "0" demas- kiert eine Bedingung, d. h. es erlaubt das Übermitteln.		Bit-String	4	S	-	RW (OS/ AUTO)	Identisch mit OD-Index 43	7.0
55	FD_FAIL_ALM	Dieser Parameter wird hauptsächlich verwendet, um eine Änderung an den zugehörigen aktiven Bedingungen für diese Alar- mkategorie, die nicht maskiert sind, an ein Hostsystem zu übermitteln.		DS-87	15	D	-	RW (OS/ AUTO)		7.0
56	FD_OFFSPEC_ALM	Dieser Parameter wird hauptsächlich verwendet, um eine Änderung an den zugehörigen aktiven Bedingungen für diese Alar- mkategorie, die nicht maskiert sind, an ein Hostsystem zu übermitteln.		DS-87	15	D	-	RW (OS/ AUTO)		7.0
57	FD_MAINT_ALM	Dieser Parameter wird hauptsächlich verwendet, um eine Änderung an den zugehörigen aktiven Bedingungen für diese Alar- mkategorie, die nicht maskiert sind, an ein Hostsystem zu übermitteln.		DS-87	15	D	-	RW (OS/ AUTO)		7.0
58	FD_CHECK_ALM	Dieser Parameter wird hauptsächlich verwendet, um eine Änderung an den zugehörigen aktiven Bedingungen für diese Alar- makategorie, die nicht maskiert sind, an ein Hostsystem zu übermitteln.		DS-87	15	D	-	RW (OS/ AUTO)		7.0
59	FD_FAIL_PRI	Dieser Parameter ermög- licht dem Anwender das Setzen der Priorität dieser Alarmkategorie.		Unsigned8	1	S	0	RW (OS/ AUTO)		7.0

Tabelle C-1.	Resource	Block	Parameter	Fortsetzung
--------------	----------	-------	-----------	-------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- ße	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
60	FD_OFFSPEC_PRI	Dieser Parameter ermög- licht dem Anwender das Setzen der Priorität dieser Alarmkategorie.		Unsigned8	1	S	0	RW (OS/ AUTO)		7.0
61	FD_MAINT_PRI	Dieser Parameter ermög- licht dem Anwender das Setzen der Priorität dieser Alarmkategorie.		Unsigned8	1	S	0	RW (OS/ AUTO)		7.0
62	FD_CHECK_PRI	Dieser Parameter ermög- licht dem Anwender das Setzen der Priorität dieser Alarmkategorie.		Unsigned8	1	S	0	RW (OS/ AUTO)		7.0
63	FD_SIMULATE	Dieser Parameter ermög- licht die manuelle Bereitstellung der Bedingungen, wenn die Simulation aktiviert ist. Ist die Simulation deaktiviert, werden die aktuellen Bedingungen sowohl durch den Diagno- sesimulationswert als auch durch den Diagnosewert verfolgt. Zum Aktivieren der Simulation ist die Steckbrücke Simulation erforderlich; während die Simulation aktiviert ist, zeigt die smulation aktiviert ist.		DS-89	9	D	deak- tiviert	RW (OS/ AUTO)		7.0
64	FD_RECOMMEN_ACT	Dieser Parameter ist eine gerätespezifische Zusammenfassung der ernsthaftesten Bedingung(en), die erkannt wurde(n). Die DD-Hilfe soll- te anhand der spezifizierten Aktion beschreiben, welche Maßnahmen getroffen wer- der Bedingung(en) zu be- seitigen. 0 ist als Nicht initialisiert definiert, 1 ist als Keine Maßnahme erforder- lich definiert, und alle anderen sind durch den Hersteller definiert.		Unsigned16	2	D	0	RO	Identisch mit OD-Index 77	7.0
65	FD_EXTENDED_ ACTIVE	Ein oder mehrere optionale Parameter, der/die dem An- wender eine detailliertere Kontrolle über die Bedingungen erlaubt/erlau- ben, die eine aktive Bedingung in den FD_*_ACTIVE Parametern verursachen.		Bit-String	4	D	-	RO	Identisch mit OD-Index 43	7.0
66	FD_EXTENDED_MAP	Ein oder mehrere optionale Parameter, der/die dem An- wender eine detailliertere Kontrolle über die Akti- vierung der Bedingungen erlaubt/erlauben, die zu den Bedingungen in den FD_*_ACTIVE Parameterm beitragen.		Bit-String	4	S	-	RW	Identisch mit OD-Index 43	7.0

Tabelle C-1. Resource Block Pa	arameter Fortsetzung
--------------------------------	----------------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- ße	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
	EPM-Parameter							1		
67	COMPATIBILITY_REV	Dieser Parameter wird ver- wendet, wenn Feldgeräte ausgetauscht werden. Der korrekte Wert dieses Parameters ist der DEV_REV Wert des aus- getauschten Geräts.		unsigned8	4	D		R		7.0
68	HARDWARE_ REVISION	Versionsnummer der Hardware	VARIABLE	unsigned8	1	S	Auf Build ge- setzt	R		7.0
69	SOFTWARE_REV	Softwareversion des Quellcodes, der im Resour- ce Block programmiert ist.		Visible String	32	S	Auf Build ge- setzt	R		7.0
70	PD_TAG	PD-Messstellenbesch- reibung des Geräts		Visible String	32	S	Ko- pie von MIB PD_ TAG	R		7.0
71	DEV_STRING	Dies wird zum Laden einer neuen Lizenz auf das Gerät verwendet. Der Wert kann geschrieben werden, wird jedoch stets mit einem Wert 0 ausgelesen.	VARIABLE	Array von unsigned32	32	S	0	R/W		1.0
72	DEV_OPTIONS	Zeigt an, welche verschiedenen Gerätelizen- zierungsoptionen aktiviert sind.		Bit-String	4	S		R/W	0x00000001 = Download	7.0
73	OUTPUT_BOARD_SN	Seriennummer der Ausgangsplatine.	VARIABLE	unsigned32	4	S	0	R		1.0
74	FINAL_ASSY_NUM	Entspricht der endgültigen Baugruppennummer auf dem Etikett des Stutzens.	VARIABLE	unsigned32	4	S	0	R/W		1.0
75	DOWNLOAD_MODE	Ermöglicht Zugriff auf den Boot-Blockcode für Downloads über das Kabel	ENUM	unsigned8	1	S	0	R		1.0
76	HEALTH_INDEX	Parameter, der den Ge- samtzustand des Geräts angibt, wobei 100 einem perfekten Zustand entspricht.	VARIABLE	Unsigned8	1	D	-	R	1–100	3.0
77	FAILED_PRI	Bestimmt die Alarmpriorität des FAILED_ALM Alarms und wird außerdem zum Umschalten zwischen FD und älteren PWA ver- wendet. Wenn der Wert größer als oder gleich 1 ist, sind PWA-Alarme im Gerät aktiv; andernfalls verfügt das Gerät über FD-Alarme.	VARIABLE	unsigned8	1	S	0	R/W	0–15	3.0

_

215

Modell 2700 Resource Block – Referenz

Tabelle C-1.	Resource	Block	Parameter	Fortsetzung
--------------	----------	-------	------------------	-------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- βe	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
78	RECOMMENDED_ACT	Spezifizierte Liste empfoh- lener Maßnahmen, angezeigt mit einem Gerätealarm.	VARIABLE	unsigned16	2	D		R	0 = Uninitialized 1 = No action 6 = Factory configuration checksum invalid 7 = Factory configuration invalid 8 = Electronics Failure - Device 9 = Replace the Fieldbus Electronics Module Assembly 10 = Transmitter Initializing/Warming Up 11 = Reset the Device then Download the Device Configuration 12 = Sensor Communication Failure 13 = Low Power 14 = No Sensor Response 15 = Mass Flow Overrange 16 = Density Overrange 17 = No Left Pickoff/Right Pickoff Signal 18 = Temperature Overrange 19 = CM: Unable to Fit Curve Data 20 = Transmitter Not Characterized 21 = Calibration Failure 23 = Data Loss Possible (Totals) 24 = Drive Overrange 25 = PM: Temperature or Density Overrange 26 = Extrapolation Alert 27 = Meter Verification Failed 28 = Meter Verification Aborted 29 = Slug Flow 30 = Sensor Simulation Active 32 = Allow the procedure to complete 33 = Check Transducer Block Mode 34 = Simulated Factory configuration checksum invalid 40 = Simulated Factory configuration checksum invalid 41 = Simulated Reset the Electronics Failure - Device 42 = Simulated Reset the Electronics Failure - Device 42 = Simulated Reset 41 = Simulated Reset 41 = Simulated Reset 42 = Simulated Reset 43 = Simulated Reset 44 = Simulated Reset 45 = Simulated No Sensor Response 48 = Simulated Low Power 47 = Simulated No Left Pickoff/Right Pickoff Signal 51 = Simulated Temperature Overrange	3.0

Tabelle C-1.	Resource	Block	Parameter	Fortsetzung
--------------	----------	-------	-----------	-------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- βe	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
									52 = Simulated CM: Unable to Fit Curve Data 53 = Simulated Transmitter Not Characterized 54 = Simulated Calibration Failure 56 = Simulated Data Loss Possible (Totals) 57 = Simulated Drive Overrange 58 = Simulated PM: Temperature or Density Overrange 59 = Simulated Extrapolation Alert 60 = Simulated Meter Verification Failed 61 = Simulated Meter Verification Aborted 62 = Simulated Slug Flow 63 = Simulated Sensor Simulation Active 65 = Simulated Allow the procedure to complete 66 = Simulated Check Transducer Block Mode	
79	FAILED_ALM	Alarm zeigt eine Störung innerhalb eines Geräts an, die das Gerät außer Betrieb setzt.	RECORD	DS-71	13	D	-	R/W		3.0
80	MAINT _ALM	Alarm, der darauf hinweist, dass das Gerät bald gewar- tet werden muss. Wenn diese Bedingung ignoriert wird. wird das Gerät ir- gendwann defekt.	RECORD	DS-71	13	D	-	R/W		3.0
81	ADVISE _ALM	Alarm zeigt Hinweisalarme an. Diese Bedingungen haben keine direkte Aus- wirkung auf die Prozess- oder Geräteintegrität.	RECORD	DS-71	13	D	-	R/W		3.0
82	FAILED_ENABLE	Aktivierte FAILED_ALM Alarmbedingungen. Ent- sprechen Bit für Bit FAILED_ACTIVE. Ein ON-Bit bedeutet, dass die entsprechende Alar- mbedingung aktiviert ist und erkannt wird. Ein OFF-Bit bedeutet, dass die ent- sprechende Alarmbedingung deaktiviert ist und nicht erkannt wird.	ENUM	Bit-String	4	S	0	R	Identisch mit OD-Index 43	3.0
83	FAILED_MASK	Maske des Störalarms. Ent- spricht Bit für Bit FAILED_ACTIVE. Ein ON-Bit bedeutet, dass der Fehler von der Alarmierung ausmaskiert wird.	ENUM	Bit-String	4	S	0	R	Identisch mit OD-Index 43	3.0
84	FAILED_ACTIVE	Spezifizierte Liste von Hin- weisbedingungen innerhalb eines Geräts. Alle offenen Bits stehen, sofern zu- treffend, zur Verwendung für jedes einzelne Gerät frei zur Verfügung.	ENUM	Bit-String	4	D	0	R	Identisch mit OD-Index 43	3.0
85	MAINT_PRI	Bestimmt die Alarmpriorität des MAINT_ALM.	VARIABLE	unsigned8	1	S	0	R/W	0 – 15	3.0

Tabelle C-1.	Resource	Block	Parameter	Fortsetzung
--------------	----------	-------	-----------	-------------

OD-Index	Parameter-Mnemonik	Definition	Meldungs typ	Datentyp/ Struktur	Grö- ße	Speicher/Rate (HZ)	Ausgangswert	Zugriff	Liste der Werte	Version
86	MAINT_ENABLE	Aktivierte MAINT_ALM Alarmbedingungen. Ent- spricht Bit für Bit MAINT_ACTIVE. Ein ON-Bit bedeutet, dass die entsprechende Alar- mbedingung aktiviert ist und erkannt wird. Ein OFF-Bit bedeutet, dass die ent- sprechende Alarmbedingung deaktiviert ist und nicht erkannt wird.	ENUM	Bit-String	4	S	0	R	Identisch mit OD-Index 43	3.0
87	MAINT _MASK	Maske des Wartungsalar- ms. Entspricht Bit für Bit MAINT_ACTIVE. Ein ON-Bit bedeutet, dass der Fehler von der Alarmierung ausmaskiert wird.	ENUM	Bit-String	4	S	0	R	Identisch mit OD-Index 43	3.0
88	MAINT _ACTIVE	Spezifizierte Liste von Hin- weisbedingungen innerhalb eines Geräts. Alle offenen Bits stehen, sofern zu- treffend, zur Verwendung für jedes einzelne Gerät frei zur Verfügung	ENUM	Bit-String	4	D	0	R	Identisch mit OD-Index 43	3.0
89	ADVISE_PRI	Bestimmt die Alarmpriorität des ADVISE_ALM.	VARIABLE	unsigned8	1	S	0	R/W	0–15	3.0
90	ADVISE_ENABLE	Aktivierte ADVISE_ALM Alarmbedingungen. Ent- spricht Bit für Bit ADVISE_ACTIVE. Ein ON-Bit bedeutet, dass die entsprechende Alar- mbedingung aktiviert ist und erkannt wird. Ein OFF-Bit bedeutet, dass die ent- sprechende Alarmbedingung deaktiviert ist und nicht erkannt wird.	ENUM	Bit-String	4	S	0	R	Identisch mit OD-Index 43	3.0
91	ADVISE _MASK	Maske des Hinweisalarms. Entspricht Bit für Bit ADVISE_ACTIVE. Ein ON-Bit bedeutet, dass der Fehler von der Alarmierung ausmaskiert wird.	ENUM	Bit-String	4	S	0	R	Identisch mit OD-Index 43	3.0
92	ADVISE _ACTIVE	Spezifizierte Liste von Hin- weisbedingungen innerhalb eines Geräts. Alle offenen Bits stehen, sofern zu- treffend, zur Verwendung für jedes einzelne Gerät frei zur Verfügung	ENUM	Bit-String	4	D	0	R	Identisch mit OD-Index 43	3.0

(1) Der Anfangswert basiert auf der Softwareversion 4.0 der Auswerteelektronik. Wenn die Auswerteelektronik eine aktuellere Softwareversion enthält, kann der Anfangswert unterschiedlich sein.

C.2 Resource Block Anzeigen

Tabelle C-2 listet die Anzeigen für den Resource Block auf. Foundation Fieldbus definiert die Anzeigen als:

- Anzeige 1 Anzeigen des Objekts, das zum Zugriff auf die dynamischen Betriebsparameter eines Blocks definiert ist
- Anzeige 2 Anzeigen des Objekts, das zum Zugriff auf die statischen Betriebsparameter eines Blocks definiert ist
- Anzeige 3 Anzeigen des Objekts, das zum Zugriff auf **alle** dynamischen Betriebsparameter eines Blocks definiert ist
- Anzeige 4 Anzeigen des Objekts, das zum Zugriff auf die statischen Parameter, die nicht in Anzeige 2 enthalten sind, definiert ist.

Die Nummer in der Zelle stellt die Größe des Parameters in Bytes dar. Jede Anzeige kann insgesamt nur 122 Datenbytes enthalten. Jede Anzeige muss mit ST_REV beginnen.

			-		1				Dia
OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 3_1	Anzeige 4	Anzeige 4_1	Anzeige 4_2	ıgran
1	ST_REV	2	2	2	2	2	2	2	nm
2	TAG_DESC								(D
3	STRATEGY					2			
4	ALERT_KEY					1			
5	MODE_BLK	4		4					
6	BLOCK_ERR	2		2					
7	RS_STATE	1		1					
8	TEST_RW								
9	DD_RESOURCE								
10	MANUFAC_ID					4			
11	DEV_TYPE					2			н
12	DEV_REV					1			Ind
13	DD_REV					1			terr
14	GRANT_DENY		2						nin
15	HARD_TYPES					2			al 3
16	RESTART								875
17	FEATURES					2			
18	FEATURE_SEL		2						
19	CYCLE_TYPE					2			
20	CYCLE_SEL		2						
21	MIN_CYCLE_T					4			
22	MEMORY_SIZE					2			
23	NV_CYCLE_T		4						
24	FREE_SPACE		4						
25	FREE_TIME	4		4					
26	SHED_RCAS		4						Р
27	SHED_ROUT		4						roLi
28	FAULT_STATE	1		1					ink
29	SET_FSTATE								
30	CLR_FSTATE								
31	MAX_NOTIFY					1			

Tabelle C-2. Resource Block Anzeigen

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 3_1	Anzeige 4	Anzeige 4_1	Anzeige 4_2
32	LIM_NOTIFY		1					
33	CONFIRM_TIME		4					
34	WRITE_LOCK		1					
35	UPDATE_EVT							
36	BLOCK_ALM							
37	ALARM_SUM	8		8				
38	ACK_OPTION					2		
39	WRITE_PRI					1		
40	WRITE_ALM							
41	ITK_VER					2		
42	FD_VER					2		
43	FD_FAIL_ACTIVE	4		4				
44	FD_OFFSPEC_ACTIVE	4		4				
45	FD_MAINT_ACTIVE	4		4				
46	FD_CHECK_ACTIVE	4		4				
47	FD_FAIL_MAP					4		
48	FD_OFFSPEC_MAP					4		
49	FD_MAINT_MAP					4		
50	FD_CHECK_MAP					4		
51	FD_FAIL_MASK					4		
52	FD_OFFSPEC_MASK					4		
53	FD_MAINT_MASK					4		
54	FD_CHECK_MASK					4		
55	FD_FAIL_ALM							
56	FD_OFFSPEC_ALM							
57	FD_MAINT_ALM							
58	FD_CHECK_ALM							
59	FD_FAIL_PRI					1		
60	FD_OFFSPEC_PRI					1		
61	FD_MAINT_PRI					1		
62	FD_CHECK_PRI					1		
63	FD_SIMULATE			9				
64	FD_RECOMMEN_ACT	2		2				
65	FD_EXTENDED_ACTIVE	4		4				
66	FD_EXTENDED_MAP					4		
67	COMPATIBILITY_REV							
68	HARDWARE_REVISION							
69	SOFTWARE_REV							
70	PD_TAG						32	
71	DEV_STRING						32	
72	DEV_OPTIONS						4	
73	OUTPUT_BOARD_SN						4	
74	FINAL_ASSY_NUM						4	
75	DOWNLOAD_MODE							
76	HEALTH_INDEX			1				
77	FAILED_PRI							1

Tabelle C-2. Resource Block Anzeigen Fortsetzung

OD Index	Parameter-Mnemonik	Anzeige 1	Anzeige 2	Anzeige 3	Anzeige 3_1	Anzeige 4	Anzeige 4_1	Anzeige 4_2
78	RECOMMENDED_ACTIO				2			
79	FAILED_ALM							
80	MAINT_ALM							
81	ADVISE_ALM							
82	FAILED_ENABLE							4
83	FAILED_MASK							4
84	FAILED_ACTIVE				4			
85	MAINT_PRI							1
86	MAINT_ENABLE							4
87	MAINT_MASK							4
88	MAINT_ACTIVE				4			
89	ADVISE_PRI							1
90	ADVISE_ENABLE							4
91	ADVISE _MASK							4
92	ADVISE_ACTIVE				4			
	Summe	44	30	54	16	73	78	29

Tabelle C-2. Resource Block Anzeigen Fortsetzung

Modell 2700 Resource Block – Referenz

Anhang D Durchflussmesser, Installationsarten und Komponenten

D.1 Übersicht

Dieser Anhang zeigt die unterschiedlichen Installationsarten für Durchflussmesser und Komponenten für die Auswerteelektronik Modell 2700.

D.2 Installationsschemata

Die Auswerteelektronik Modell 2700 kann auf vier verschiedene Arten installiert werden:

- Integriert
- 4 Leiter extern
- 9 Leiter extern
- Externer Core-Prozessor mit externer Auswerteelektronik

Siehe Abbildung D-1.

D.3 Komponentenschemata

Abbildung D-2 zeigt die Auswerteelektronik- und Core-Prozessor-Komponenten für die integrierte Installation.

Abbildung D-3 zeigt die Auswerteelektronik-Komponenten der externen Installation mit 4 Leitern und der Installation mit externem Core-Prozessor und externer Auswerteelektronik.

Abbildung D-4 zeigt die Auswerteelektronik/Core-Prozessor-Einheit der externen Installation mit 9 Leitern.

Bei Installationen mit externem Core-Prozessor und externer Auswerteelektronik ist der Core-Prozessor als separates Gerät installiert. Siehe Abbildung D-5.

D.4 Verdrahtungs- und Anschlussschemata

Bei externer Installation mit 4 Leitern sowie Installation mit externem Core-Prozessor und externer Auswerteelektronik, wird ein 4-adriges Kabel zum Anschluss des Core-Prozessors an den Verbindungsstecker der Auswerteelektronik verwendet. Siehe Abbildung D-6.

Bei externer Installation mit 9 Leitern wird ein 9-adriges Kabel zum Anschluss von der Sensor-Anschlussdose an die Anschlussklemmen der Auswerteelektronik/Core-Prozessor-Einheit verwendet. Siehe Abbildung D-8.

Abbildung D-9 zeigt die Anschlussklemmen für die Spannungsversorgung der Auswerteelektronik.

Abbildung D-9 zeigt die Anschlussklemmen für die Ausgänge der Auswerteelektronik Modell 2700.

Durchflussmesser, Installationsarten und Komponenten

Abbildung D-2 Auswerteelektronik- und Core-Prozessor-Komponenten – Integrierte Installation

Abbildung D-3 Auswerteelektronik-Komponenten (abgenommener Abschlussdeckel) – externe Installation mit 4 Leitern extern sowie externer Core-Prozessor mit externer Auswerteelektronik

Durchflussmesser, Installationsarten und Komponenten

Abbildung D-4 Auswerteelektronik/Core-Prozessor-Einheit (Explosionsansicht) – externe Installation mit 9 Leitern

Abbildung D-5 Komponenten des externen Core-Prozessors

Abbildung D-6 4-adrige Kabel zwischen Auswerteelektronik Modell 2700 und Core-Prozessor mit Standard-Funktionalität

Abbildung D-7 4-adriges Kabel zwischen Auswerteelektronik Modell 2700 und Core-Prozessor mit erweiterter Funktionalität

Abbildung D-8 9-adrige Kabel zwischen Sensor-Anschlussdose und Core-Prozessor

Abbildung D-9 Anschlussklemmen – Ausgänge und Spannungsversorgung

Auswerteelektronik Modell 2700 mit FOUNDATION[™] Feldbus

Anhang E Verbindung mit einem Handterminal

E.1 Übersicht

Das Handterminal ist ein Konfigurations- und Managementgerät für mit FOUNDATION Fieldbus kompatible Geräte, inklusive dem Micro Motion Auswerteelektronikmodell 2700. Dieser Anhang enthält die grundlegenden Informationen zum Anschließen des Handterminals an die Auswerteelektronik.

Die Anweisungen in dieser Betriebsanleitung setzen voraus, dass Sie bereits mit dem Handterminal vertraut sind und daher die nachfolgenden Schritte durchführen können:

- Einschalten des Handterminals
- Navigieren durch die Menüs des Handterminals
- Senden und Empfangen von Konfigurationsinformationen zwischen Handterminal und mit FOUNDATION Fieldbus kompatiblen Geräten
- Benutzen der alphanumerischen Tastatur zur Eingabe von Informationen

Wenn Sie nicht in der Lage sind, die oben aufgeführten Punkte auszuführen, nehmen Sie die Betriebsanleitung des Handterminals zur Hand, bevor Sie mit dem Handterminal weiterarbeiten. Die Dokumentation ist verfügbar auf der Micro Motion Website (www.micromotion.com).

Anmerkung: Vorgehensweisen in dieser Betriebsanleitung, die mit einem Feldbus-Host durchgeführt werden, können ebenso mit einem Handterminal durchgeführt werden.

E.2 Anzeige der Gerätebeschreibungen

Um Zugriff auf alle Funktionen des Auswerteelektronikmodells 2700 mit FOUNDATION Fieldbus zu erhalten, muss das Handterminal die Gerätebeschreibungen (Device Descriptors, DD) für Version 6.x Geräte haben. DD-Dateien sind im Produktbereich auf der Micro Motion Website www.micromotion.com verfügbar.

So zeigen Sie auf dem Handterminal installierte Gerätebeschreibungen für das Modell 2700 an:

- 1. Im Foundation Fieldbus Menü "Application", wählen Sie Utility, dann Available Device Descriptions List.
- 2. Öffnen Sie Micro Motion, Inc. dann 2000.
- 3. Wenn die **Dev Rev 6** Gerätebeschreibung nicht installiert ist, müssen Sie diese erwerben, um die Funktionen, die in dieser Betriebsanleitung beschrieben sind, verwenden zu können. Kontaktieren Sie Micro Motion.

E.3 Anschluss an eine Auswerteelektronik

Das Handterminal kann direkt an ein Feldbus-Segment angeschlossen werden. Abbildung E-1 und E-2 zeigen zwei Beispiele für den Anschluss eines Handterminals an ein Segment.

Verbindung mit einem Handterminal

Anhang F Verbindung mit ProLink II oder Pocket ProLink Software

F.1 Übersicht

ProLink II ist eine auf Windows basierende Software zur Konfiguration sowie zum Daten- und Funktionshandling für Micro Motion Auswerteelektroniken. Sie ermöglicht den Zugriff auf alle Daten und Funktionen der Auswerteelektronik.

Dieses Kapitel enthält die grundlegenden Informationen zum Anschließen von ProLink II an Ihre Auswerteelektronik. Folgende Punkte und Vorgehensweisen werden behandelt:

- Anforderungen (siehe Abschnitt F.2)
- Upload/Download von Konfigurationen (siehe Abschnitt F.3)
- Anschluss an ein Auswerteelektronikmodell 2700 (siehe Abschnitt F.4)

Die Anweisungen in dieser Betriebsanleitung setzen voraus, dass Sie bereits mit der ProLink II Software vertraut sind. Weitere Informationen zur Verwendung von ProLink II, finden Sie in der ProLink II Betriebsanleitung.

F.2 Anforderungen

Um ProLink II mit Auswerteelektroniken der Serie 2700 zu verwenden, gelten folgende Voraussetzungen:

- ProLink II v2.0 oder höher für die meisten Basisfunktionen
- ProLink II v2.91 oder höher für den Zugriff auf viele erweiterte Funktionen wie der intelligenten Systemverifizierung
- Ein RS-485-zu-RS-232-Signalkonverter, um das Signal des PC-Ports in das Signal der Auswerteelektronik verwendet, umzuwandeln. Für Computer ohne seriellen Port können bestimmte USB-zu-RS-232-Konverter in Verbindung mit RS-232-zu-RS-485-Konvertern verwendet werden. Beide Konverter sind über Micro Motion lieferbar.
- 25-auf-9-Pin-Adapter (falls für Ihren PC erforderlich).

Anmerkung: Wenn Sie einen Core-Prozessor mit erweiterter Funktionalität verwenden und direkt an den RS-485-Anschlussklemmen des Core-Prozessor anschließen (siehe Anhang D) anstatt an der Auswerteelektronik, benötigen Sie mindestens ProLink II v2.4. Die Anschlussart wird gelegentlich für die Störungsanalyse und -beseitigung verwendet.

F.3 ProLink II, Upload/Download von Konfigurationen

ProLink II ermöglicht ein Upload/Download von Konfigurationen, sodass Sie Konfigurationen auf Ihrem PC abspeichern können. Dies ermöglicht:

- Einfaches Sichern und Wiederherstellen der Konfigurationen von Auswerteelektroniken
- Einfaches Kopieren von Konfigurationen

Micro Motion empfiehlt, alle Auswerteelektronik-Konfigurationen auf einen PC herunterzuladen, sobald die Konfiguration vollständig ist.

Zum Upload/Download von Konfigurationen:

- 1. Schließen Sie ProLink II wie in diesem Kapitel beschrieben an die Auswerteelektronik an.
- 2. Im Menü File:
 - Um eine Konfigurationsdatei auf dem PC zu speichern, verwenden Sie die Option Load from Xmtr to File.
 - Um eine Konfigurationsdatei auf einer Auswerteelektronik wiederherzustellen oder zu übertragen, verwenden Sie die Option **Send to Xmtr from File**.

F.4 Anschluss zwischen PC und Auswerteelektronik Modell 2700

An den Serviceport der Auswerteelektronik können Sie vorübergehend einen PC anschließen. Der Serviceport befindet sich im Anschlussraum der Auswerteelektronik unterhalb der eigensicheren Abdeckung. Siehe Abbildung F-1.

F.4.1 Anschluss an den Serviceport

Vorübergehender Anschluss an den Serviceport, der sich im nicht-eigensicheren Gehäuseraum der Spannungsversorgung befindet:

- 1. Stecken Sie den Signalkonverter in den seriellen oder USB-Port Ihres PCs ein. Verwenden Sie hierzu im Bedarfsfall einen 25-auf-9-Pin-Adapter.
- 2. Öffnen Sie den Deckel des eigensicheren Anschlussraums.

3. Öffnen Sie Spannungsversorgungsfach.

-klemmen der Spannungsversorgung.

 Schließen Sie die Leiter des Signalkonverters an die Serviceport-Klemmen an. Siehe Abbildung F-2.

Abbildung F-2 Anschließen an den Serviceport

- 5. Starten Sie ProLink II. Wählen Sie **Connection > Connect to Device**. Im erscheinenden Fenster spezifizieren Sie:
 - **Protocol**: Service Port
 - **COM Port**: Entsprechend Ihrem PC

Alle anderen Parameter werden auf die Werte für den Serviceport gesetzt und können nicht geändert werden.

- 6. Klicken Sie auf **Connect**.
- 7. Wenn eine Fehlermeldung erscheint:
 - a. Tauschen Sie die beiden Leiter am Serviceport und versuchen es erneut.
 - b. Stellen Sie sicher, dass Sie den richtigen COM-Port verwenden.
 - c. Prüfen Sie die Verdrahtung zwischen PC und Auswerteelektronik.

F.5 ProLink II Sprache

ProLink II kann für folgende Sprachen konfiguriert werden:

- Englisch
- Französisch
- Deutsch

Um die ProLink II Sprache zu konfigurieren, wählen Sie **Tools > Options**. In dieser Betriebsanleitung wird Deutsch als ProLink II Sprache verwendet.

Anhang G Verwenden des Bedieninterface

G.1 Übersicht

Dieser Anhang beschreibt die grundlegende Bedienung des Bedieninterface und bietet Ihnen einen Menübaum für das Display. Den Menübaum können Sie zum Lokalisieren und schnellen Ausführen von Befehlen verwenden.

Beachten Sie, dass die Auswerteelektronik Modell 2700 mit oder ohne Bedieninterface bestellt werden kann. Nicht alle Konfigurationen und Betriebsfunktionen sind über das Bedieninterface verfügbar. Wenn Sie zusätzliche Funktionen benötigen oder Ihre Auswerteelektronik kein Bedieninterface hat, müssen Sie zur Kommunikation entweder einen Feldbus-Host oder ProLink II verwenden.

G.2 Komponenten

Abbildung G-1 stellt die Bedieninterface-Komponenten dar.

Abbildung G-1 Bedieninterface-Komponenten

G.3 Gebrauch der optischen Tasten

Die optischen Tasten **Scroll** und **Select** werden zum Bedienen des Displaymenüs benötigt. Um eine optische Taste zu betätigen, berühren Sie die Glasscheibe vor der optischen Taste oder führen den Finger nahe der Glasscheibe über die optische Taste. Es sind zwei Kontrollleuchten für die optischen Tasten vorhanden: eine für jede Taste. Wenn eine optische Taste betätigt wurde, leuchtet die Kontrollleuchte der optischen Taste rot.

ACHTUNG

Der Versuch, eine optische Taste durch Einstecken eines Gegenstands in die Öffnung zu betätigen, kann das Gerät beschädigen.

Um eine Beschädigung der optischen Tasten zu vermeiden, stecken Sie keinen Gegenstand in die Öffnungen. Benutzen Sie Ihre Finger, um die optischen Tasten zu betätigen.

G.4 Verwenden des Bedieninterface

Das Bedieninterface kann zur Anzeige der Prozessvariablen oder zum Zugriff auf die Menüs zur Konfiguration oder Wartung der Auswerteelektronik verwendet werden.

G.4.1 Displaysprache

Das Bedieninterface kann für folgende Sprachen konfiguriert werden:

- Englisch
- Französisch
- Spanisch
- Deutsch

Aufgrund von Software- und Hardware-Begrenzungen erscheinen möglicherweise einige englische Wörter oder Ausdrücke in einem nicht-englischen Menü in Englisch. Eine Liste mit Codes und Abkürzungen, die vom Display verwendet werden, finden Sie in Tabelle G-1.

Informationen über die Konfiguration der Displaysprache, finden Sie in Abschnitt 4.18.6.

In dieser Betriebsanleitung wird Deutsch als Displaysprache verwendet.

G.4.2 Anzeigen von Prozessvariablen

Im normalen Betrieb zeigt die Zeile **Prozessvariable** die konfigurierte Prozessvariable und die Zeile **Messeinheiten** die Messeinheiten dieser Prozessvariablen an.

- Informationen über die Konfiguration der Displayvariablen finden Sie in Abschnitt 4.18.5.
- In Tabelle G-1 finden Sie Informationen über Codes und Abkürzungen, die für die Displayvariablen verwendet werden.

Wenn mehr als eine Zeile für die Darstellung der Prozessvariablen benötigt wird, zeigt die Zeile **Messeinheiten** abwechselnd die Messeinheiten und zusätzliche Informationen an. Wird zum Beispiel der Wert des Massen-Gesamtzählers in der LCD-Anzeige angezeigt, zeigt die Zeile der **Messeinheiten** alternierend die Messeinheiten (z.B. **G**) und die Bezeichnung des Gesamtzählers (z.B. **MASSI**) an.

Auto Scroll kann aktiviert oder deaktiviert werden:

- Wenn Auto Scroll aktiviert ist, wird jede konfigurierte Displayvariable so viele Sekunden angezeigt, wie unter Scroll Rate spezifiziert.
- Wenn Auto Scroll deaktiviert ist, kann der Bediener manuell durch die konfigurierten Displayvariablen scrollen, in dem er die **Scroll** Taste betätigt.

Weitere Informationen zur Verwendung des Bedieninterface für die Betätigung von Summen- und Gesamtzählern finden Sie in Kapitel 5.

G.4.3 Verwenden der Displaymenüs

Anmerkung: Das Displaymenü bietet Zugriff auf grundlegende Funktionen und Daten der Auswerteelektronik. Es bietet keinen Zugriff auf alle Funktionen und Daten. Um Zugriff auf alle Funktionen und Daten zu erhalten, verwenden Sie Feldbus-Host oder ProLink II

Um das Displaymenü aufzurufen:

- 1. Aktivieren Sie gleichzeitig **Scroll** und **Select**.
- 2. Halten Sie Scroll und Select, bis SEE ALARM oder OFF-LINE MAINT auf dem Bildschirm erscheint.

Anmerkung: Der Zugriff auf das Displaymenii kann aktiviert oder deaktiviert werden. Ist der Zugriff deaktiviert, erscheint die Option OFF-LINE MAINT nicht. Mehr Informationen finden Sie in Abschnitt 4.18.1.

Erfolgt innerhalb von zwei Minuten keine Betätigung der optischen Schalter, verlässt die Auswerteelektronik das Offline-Menüsystem und geht zurück zur Anzeige der Prozessvariablen.

Um durch die Liste der Optionen zu blättern, aktivieren Sie Scroll.

Um etwas aus der Liste auszuwählen oder in ein Untermenü zu gelangen, scrollen Sie zur gewünschten Option und betätigen Sie **Select**. Wenn ein Bestätigungsbildschirm angezeigt wird:

- Um eine Änderung zu bestätigen, betätigen Sie Select.
- Um eine Änderung zu verwerfen, betätigen Sie Scroll.

Um ein Menü zu verlassen, ohne Änderungen vorzunehmen:

- Verwenden Sie die Option **EXIT**, sofern verfügbar.
- Andernfalls betätigen Sie Scroll auf dem Bestätigungsbildschirm.

G.4.4 Bedieninterface-Passwort

Ein Passwort kann zum Steuern des Zugriffs auf das Offline-Wartungsmenü, das Alarmmenü oder beide Menüs verwendet werden. Für beide wird der gleiche Code verwendet:

- Sind beide Passwörter aktiviert, muss der Anwender das Passwort eingeben, um Zugriff auf das oberste Level des Offline-Menüs zu erhalten. Der Anwender hat dann Zugriff auf das Alarmmenü oder das Offline-Wartungsmenü ohne erneute Eingabe des Passworts.
- Ist nur ein Passwort aktiviert, hat der Anwender Zugriff auf das oberste Level des Offline-Menüs, wird aber nach dem Passwort gefragt, wenn er auf das Alarmmenü oder das Offline-Wartungsmenü zugreifen will (je nachdem, welches Passwort aktiviert ist). Der Anwender kann ohne Passwort auf das andere Menü zugreifen.
- Ist kein Passwort aktiviert, hat der Anwender ohne Passwort Zugriff auf alle Teile des Offline-Menüs.

Informationen über das Aktivieren und Einrichten des Bedieninterface-Passworts finden Sie in Abschnitt 4.18.

Anmerkung: Wenn die Anwendung Mineralölmessung auf Ihrer Auswerteelektronik installiert ist, muss immer das Bedieninterface-Passwort eingegeben werden, um die Zähler zu starten, stoppen oder zurückzusetzen, auch wenn kein Passwort aktiviert ist. Wenn die Anwendung Mineralölmessung nicht installiert ist, ist das Bedieninterface-Passwort für diese Funktionen nicht erforderlich, auch wenn eines der Passwörter aktiviert ist.

Ist ein Passwort erforderlich, erscheint **CODE?** oben auf dem Passwort-Bildschirm. Geben Sie die Ziffern des Passworts folgendermaßen ein: **Scroll**, um eine Zahl auszuwählen und **Select**, um zur nächsten Stelle zu gehen.

Wenn der Passwort-Bildschirm erscheint, Sie das Passwort aber nicht kennen, warten Sie 30 Sekunden ohne die optischen Tasten zu betätigen. Der Passwort-Bilschirm wird automatisch geschlossen und der vorherige Bildschirm wird wieder aufgerufen.

G.4.5 Eingeben von Fließkommawerten mit dem Bedieninterface

Bestimmte Konfigurationswerte wie Gerätefaktoren oder Ausgangsbereiche sind als Fließkommawerte einzugeben. Wenn Sie das erste Mal auf den Konfigurationsbildschirm gehen, wird der Wert in Dezimalschreibweise angezeigt (wie in Abbildung G-2 dargestellt) und die aktive Ziffer blinkt.

Abbildung G-2 Numerische Werte in Dezimalschreibweise

positive Zahlen lassen Sie dieses Feld leer. Für negative Zahlen geben Sie ein Minuszeichen (–) ein. Ziffern Carriage Return (CR) Geben Sie eine Zahl ein (max. Länge: acht Ziffern oder sieben Ziffern und ein Minuszeichen). Max. vier Stellen rechts vom Komma.

Um den Wert zu ändern:

- 1. **Select**, um eine Stelle nach links zu gehen. Vor der linksäußeren Stelle ist Platz für ein Vorzeichen. Der Platz für das Vorzeichen springt zurück auf die rechtsäußere Stelle.
- Scroll, um den Wert der aktiven Stelle zu ändern: 1 wird zu 2, 2 wird zu 3, ..., 9 wird zu 0, 0 wird zu 1. Die rechtsäußere Stelle enthält die Option E, um auf die Exponentialschreibweise umzuschalten.

Um das Vorzeichen eines Werts zu ändern:

- 1. Verwenden Sie **Select**, um auf die Stelle zu gehen, die direkt links neben der linksäußeren Ziffer liegt.
- 2. Verwenden Sie **Scroll**, um () für einen negativen Wert oder (leer) für einen positiven Wert zu spezifizieren.

In der Dezimalschreibweise können Sie die Position des Kommas auf bis zu vier Stellen rechts vom Komma setzen. Hierzu:

- 1. Drücken Sie Select, bis das Dezimalkomma (Punkt) blinkt.
- 2. Drücken Sie **Scroll.** Dies bewegt das Dezimalkomma (Punkt) und den Cursor eine Stelle nach links.
- 3. Drücken Sie **Select**, um eine Stelle nach links zu gehen. Wenn Sie von einer Stelle zur nächsten gehen, blinkt ein Dezimalkomma (Punkt) zwischen jedem Stellenpaar.
- 4. Wenn das Dezimalkomma (Punkt) in der gewünschten Position ist, drücken Sie **Scroll**. Dies fügt das Dezimalkomma (Punkt) ein und bewegt den Cursor eine Stelle nach links.
- Um von der Dezimalschreibweise zur Exponentialschreibweise zu wechseln (siehe Abbildung G-3):
 - 1. Drücken Sie **Select**, bis die rechtsäußere Stelle blinkt.
 - 2. Drücken Sie **Scroll** bis **E**, dann **Select**. Die Anzeige ändert sich so, dass Platz für die Eingabe von zwei Exponenten ist.

Verwenden des Bedieninterface

- 3. Um den Exponenten einzugeben:
 - a. Drücken Sie Select, bis die gewünschte Stelle blinkt.
 - b. Gehen Sie mit **Scroll** zum gewünschten Wert. Sie können ein Minuszeichen eingeben (nur an der ersten Position), Werte zwischen 0 und 3 (an der ersten Position im Exponent) oder Werte zwischen 0 und 9 (an der zweiten Position im Exponent).
 - c. Drücken Sie Wählen.

Anmerkung: Wenn Sie zwischen Dezimal- und Exponentialschreibweise wechseln, gehen ungespeicherte Bearbeitungen verloren. Das System kehrt zum vorher gespeicherten Wert zurück.

Anmerkung: Während der Exponentialschreibweise ist die Position des Dezimalkommas (Punkt) und des Exponenten fixiert.

Um von der Exponentialschreibweise zur Dezimalschreibweise zu wechseln:

- 1. Drücken Sie **Select**, bis **E** blinkt.
- 2. Drücken Sie **Scroll**, bis **d** erscheint.
- 3. Drücken Sie **Wählen**. Die Anzeige ändert sich und entfernt den Exponenten.

Um das Menü zu beenden:

- Wenn der Wert geändert wurde, drücken Sie gleichzeitig **Select** und **Scroll**, bis der Bestätigungsbildschirm angezeigt wird.
 - Drücken Sie **Select**, um die Änderung zu übernehmen und das Menü zu beenden.
 - Drücken Sie auf **Scroll**, um das Menü zu beenden ohne die Änderung zu übernehmen.
- Wenn der Wert nicht geändert wurde, drücken Sie gleichzeitig **Select** und **Scroll**, bis der vorherige Bildschirm angezeigt wird.

G.5 Abkürzungen

Das Bedieninterface verwendet diverse Abkürzungen. Tabelle G-1 listet die Abkürzungen auf, die vom Bedieninterface verwendet werden.

Abkürzung	Definition	Abkürzung	Definition
ACK ALARM	Alarm bestätigen	LPO_A	Amplitude linke Aufnehmerspule
ACK ALL	Alle Alarme bestätigen	LVOLI	Volumen-Gesamtzähler
ADDR	Adresse	LZERO	Nullpunktwert
AUTO SCRLL	Auto scroll	MAINT	Wartung
AVE_D	Durchschnittsdichte	MASSE	Massendurchfluss
AVE_T	Durchschnittstemperatur	MASSI	Massen-Gesamtzähler
BRD_T	Platinentemperatur	MFLOW	Massendurchfluss
BKLT	Hintergrundbeleuchtung	MESS	Messung
CAL	Kalibrierung	MTR F	Gerätefaktor
CHANGE CODE	Bedieninterface-Passwort ändern	MTR_T	Gehäusetemperatur (nur T-Serie)
CODE	Bedieninterface-Passwort	NET M	KM-Netto-Massendurchfluss
CONC	Konzentration	NET V	KM-Netto-Volumendurchfluss
CONFG	Konfigurieren (oder Konfiguration)	NETMI	KM-Nettomassen-Gesamtzähler
CORE	Core-Prozessor	NETVI	KM-Nettovolumen-Gesamtzähler
CUR Z	Aktueller Nullpunktwert	OFFLN	Offline
DICHT	Dichte	PASSW	Passwort
DGAIN	Antriebsverstärkung	PRESS	Druck
DISBL	Deaktivieren	PWRIN	Eingangsspannung
DRIVE%	Antriebsverstärkung	r.	Revision
DSPLY	Display	RDENS	Dichte bei Referenztemperatur
ENABL	Aktivieren	RPO_A	Amplitude rechte Aufnehmerspule
ENABLE ACK	ACK ALL Funktion aktivieren	SGU	Einheiten für spezifisches Gewicht
ENABLE ALARM	Alarmmenü aktivieren	SIM	Simuliert
ENABLE AUTO	Auto Scroll aktivieren	SPECL	Spezial
ENABLE OFFLN	Offline-Menü aktivieren	STD M	Standard-Massendurchfluss
ENABLE PASSW	Bedieninterface-Passwort aktivieren	STD V	Standard-Volumendurchfluss
ENABLE RESET	Zähler Zurücksetzen aktivieren	STDVI	Standardvolumen-Gesamtzähler
ENABLE START	Zähler Stoppen/Starten aktivieren	TCDENS	Temperaturkorrigierte Dichte
EXT_P	Externer Druck	TCORI	Temperaturkorrigierter Gesamtzähler
EXT_T	Externe Temperatur	TCORR	Temperaturkorrigierter Summenzähler
EXTRN	Extern	TCVOL	Temperaturkorrigiertes Volumen
FAC Z	Werksseitiger Nullpunktwert	TEMPR	Temperatur
FCF	Durchflusskalibrierfaktor	TUBEF	Messrohrfrequenz
FLDIR	Durchflussrichtung	VER	Version
GSV	Gas-Standardvolumen	VERFY	Verifizierung
GSV F	Gas-Standardvolumendurchfluss	VFLOW	Volumendurchfluss
GSV I	Gas-Standardvolumen- Gesamtzähler	VOL	Volumendurchfluss

Tabelle G-1. Displaycodes und Abkürzungen

Abkürzung	Definition	Abkürzung	Definition
GSV T	Gas-Standardvolumenzähler	WRPRO	Schreibschutz
INTERN	Intern	WTAVE	Gewichteter Durchschnitt
SPRAC	Sprache	XMTR	Auswerteelektronik
LOCK	Schreibschutz		

Tabelle G-1. Displaycodes und Abkürzungen Fortsetzung

Display
Anhang H NE53 Historie

H.1 Übersicht

Dieser Anhang dokumentiert die Änderungshistorie der Auswerteelektronik Modell 2700 mit FOUNDATION Feldbus Software.

H.2 Software-Änderungshistorie

Tabelle H-1 beschreibt die Änderungshistorie der Auswerteelektronik-Software. Betriebsanweisungen sind in Englisch. Anweisungen in anderen Sprachen haben andere Nummern, entsprechen aber den Revisionsdokumenten.

Datum	Software version	Softwareänderungen	Betriebsanwei- sungen
09/2000	1.0	Erstfreigabe	20000326 Rev. A
06/2001	2.0	Software-Erweiterung	20000326 Rev. B
		Unterstützung zur Konfiguration von Prozessvariableneinheiten für Massendurchfluss, Volumendurchfluss, Dichte und Temperatur mittels Bedieninterface hinzugefügt.	
		Software-Anpassung	
		Interaktion der digitalen Störeinstellung und des zuletzt gemessenen Wert-Timeouts geklärt.	
		Zusätzliche Funktionen	
		Backup link active scheduler (LAS) hinzugefügt.	
		PID Function Block hinzugefügt.	
		Analog Output Function Block für Druckkompensation hinzugefügt.	
		Unterstützung für Druckkompensation zum Transducer Block hinzugefügt.	
		Antriebsverstärkung als wählbarer Kanal für Al Blocks hinzugefügt.	
		Möglichkeit zur Aktivierung des Feldbus-Simulationsmodus mittels Serviceport hinzugefügt.	-
2/2002	2.2	Software-Anpassung	20000326 Rev. C
		Handhabung der RS-485 Kommunikation mittels Serviceport verbessert.	-
		Anwendererfahrung mit dem Bedieninterface verbessert.	-
		Zusätzliche Funktionen	-
		Schutz vor niedrigen Spannungsbedingungen hinzugefügt.	-

Tabelle H-1. Software-Änderungshistorie der Auswerteelektronik

NE53 Historie

Datum	Software version	Softwareänderungen	Betriebsanwei- sungen
7/2004	3.x	Software-Erweiterung	20000326 Rev. D
		Software-Versionsinformationen verfügbar über Bedieninterface oder Modbus.	
		Zähler können außer gestartet und gestoppt auch deaktiviert werden.	
		Anzahl der Virtual Communication Relationships (VCRs) verdoppelt.	
		Software-Anpassung	- - - - -
		Handhabung des AI Block Status verbessert, wenn Schwallströmung festgestellt wird.	
		Einige Feldbus-Parameter bleiben über einen Aus-/Einschaltvorgang erhalten.	
		Regelung mit höherer Auflösung mittels Zugriff des Anwenders auf Displayfunktionen eingeführt.	
		Zusätzliche Funktionen	
		Anwendung Mineralölmessung hinzugefügt.	
		Gas-Standardvolumen-Funktionalität hinzugefügt.	
		Anwendung Erweiterte Dichte hinzugefügt.	
		Unterstützung zur Aktivierung des Feldbus-Simulationsmodus mittels Bedieninterface hinzugefügt.	
		Unterstützung der Konfiguration für eine Kennzeichnung mit 32 Zeichen mittels Modbus hinzugefügt.	
		Unterstützung der Konfiguration des Analog Input Blocks mittels Modbus hinzugefügt.	
06/2007	4.0	Software-Erweiterung	20000326 Rev. E
		Temperatur- und Dichteeinheiten zum API Transducer Block hinzugefügt.	
		Zusätzliche Konfigurationsmöglichkeiten für das Bedieninterface.	
		Zusätzliche Funktionen	
		Konfigurierbare Alarmstufen hinzugefügt.	
		Mehr Unterstützung für Gas-Standardvolumen-Funktionalität hinzugefügt.	
		Optionale Systemverifizierung hinzugefügt.	
		Displaysprachen-Auswahl hinzugefügt.	
		PlantWeb-Alarme II implementiert.	
		Möglichkeit der Aktivierung des Simulationsmodus mittels Device Information Transducer Block hinzugefügt.	
		Voreingestellte Werte für AI Blocks hinzugefügt: • Al1: Massendurchfluss in g/s • Al2: Temperatur in °C • Al3: Dichte in g/cm ³) • Al4: Volumendurchfluss in l/s	

Tabelle H-1. Software-Änderungshistorie der Auswerteelektronik Fortsetzung

NE53 Historie

Datum	Software version	Softwareänderungen	Betriebsanwei- sungen
01/2008	5.0	Software-Anpassung	20000326 Rev. EA
		Handhabung von Abschaltungen des Gas-Standard-Volumendurchflusses verbessert.	-
		Funktionalität des Bedieninterface für Variablen der Mineralöl- (API) und Konzentrationsmessung verbessert.	-
		Zusätzliche Funktionen	-
		Unterstützung der AMS Snap-On Systemverifizierung hinzugefügt.	-
		Zusätzliche Sicherheit beim Zugriff auf das Offline-Menü des Bedieninterface hinzugefügt.	-
03/2009	5.1	Software-Anpassung	20000326 Rev. EA
		Problem mit der Zuverlässigkeit des nicht flüchtigen Speichers in Softwareversion 4.0 und 5.0 beseitigt.	-
06/2010	6.0	Software-Anpassung	20000326 Rev. EA
		Intelligente Systemverifizierung	
		Darstellung des Gasvolumens auf dem Bedieninterface verbessert	
		Verhalten der Gasvolumen-Dichteparameter mit anderen Parametern des Gas-Standardvolumens harmonisiert	
07/2012	7.0	Software-Anpassung	20000326 Rev. EB
		Freigabe neuer Firmware und Hardware für MVD 2700 Auswerteelektronik mit Foundation Feldbus für ITK6.0.1 getestet. Die Version der neuen Firmware ist 7.00 und die Hardwareversion ist AB.	
		Zusätzliche Funktionen	-
		Zwei Analog Output (AO) Function Blocks. Ein AO Block kann dem Variablenkanal für Druckkompensation und der andere AO Block kann einem der Variablenkanäle für Transducer Block Kompensation zugeordnet werden.	-
		Ein Discrete Input (DI) und ein Discrete Output (DO) Function Block wurden hinzugefügt.	-
		Ein Kanal für temperaturkompensierte Daten wurde im Transducer Block hinzugefügt.	
		Im Transducer Block wurden zusätzliche Kanäle für Discrete Output Variablen hinzugefügt. Diese Variablen können dem Discrete Output Block zugeordnet werden. • Sensor-Nullpunktkalibrierung starten. • Massenzähler zurücksetzen • API-Referenzvolumenzähler (Standard) zurücksetzen • Alle Summenzähler zurücksetzen • ED-Referenzvolumenzähler zurücksetzen • ED-Netto-Massenzähler zurücksetzen • ED-Netto-Volumenzähler zurücksetzen • Alle Summenzähler starten/stoppen • ED-Kurve inkrementieren • Gas-Standardvolumenzähler zurücksetzen • Systemverifizierung im Modus kontinuierliche Messung starten	
		Live-Software-Download über das Foundation Fieldbus Segment wird unterstützt.	-
		PlantWeb Field Diagnostic (FD) wird unterstützt. Die Diagnoseinformationen basieren auf der NAMUR NE 107 Norm. AMS v12 wird NE 107 unterstützen.	- -
		Link-Master-Funktionalität wird unterstützt.	

Tabelle H-1. Software-Änderungshistorie der Auswerteelektronik Fortsetzung

Display

Tabelle H-1. Software-Änderungshistorie der Auswerteelektronik Fortsetzung

Datum	Software version	Softwareänderungen	Betriebsanwei- sungen
		Folgende Funktionen wurden hinzugefügt:	
		 Folgende zusätzlichen Alarme wurden hinzugefügt: A128 = Werkskonfigurationsdaten der Auswerteelektronik ungültig. A129 = Prüfsumme der Werkskonfigurationsdaten der Auswerteelektronik ungültig 	
		Fault Disconnection Electronics (FDE) wurde der Hardware hinzugefügt. Diese Funktion verhindert eine unerwünschte überhöhte Stromaufnahme im Falle eines Fehlers, die den Betrieb anderer Geräte im System beeinträchtigen könnte. (Der im Vergleich zum Nennstrom erhöhte Gleichstrom wird als "Fehlerstrom" bezeichnet.)	
		Folgende Function Blocks werden unterstützt: • Resource Block = 1 • Transducer Block = 1 • Analog Input Blocks = 4 • Analog Output Blocks = 2 • Discrete Input Block = 1 • Discrete Output Block = 1 • PID Block = 1 • Integrator Block = 1	

-

Stichwortverzeichnis

A

Abschaltungen 85 Störungsanalyse/-beseitigung 127 AI Block Kanäle 6 Konfigurationsfehler 123 Aktivieren/Deaktivieren der Bedieninterface-Funktionen 90 Alarm menu 90 Alarme Siehe Prozessalarme oder Statusalarme Alarme bestätigen 90 Alarm-Menü Passwort 91,96 Alarmmenü Passwort 237 Alarmprotokoll 114, 115 Alarmstufe 79 Anschlussklemmen 228 Anschlussklemmen-Spannungsversorgung 228 Antriebsverstärkung Störungsanalyse/-beseitigung 136 Anwendung Erweiterte Dichte 71 Anwendung Mineralölmessung 66 Aufnehmerspannung Störungsanalyse/-beseitigung 137 Ausgangsklemmen 228 Ausgangsskalierung 75 Störungsanalyse/-beseitigung 127 Auskleidungswerkstoff 89 Auto scroll 90, 236

B

Bedieninterface 2
Anzeigen von Alarmen 113
Anzeigen von Prozessvariablen 236
Bestätigen von Alarmen 113
Codes 240
Dezimalschreibweise 238
Exponentialschreibweise 239
Komponenten 235
Passwort 237
Sprache 236
Übersicht 235
Bestätigen von Alarmen 113, 114

C

Charakterisierung 24, 26 Beispiel-Typenschilder 27, 28 Dichtekalibrierfaktoren 28 Durchflusskalibrierwerte 28 Parameter 26 Störungsanalyse/-beseitigung 127, 129 Code Status Alarmcode 128 CODE? 237 Codes Displaycodes 240 Core-Prozessor 224 Anschlussklemmen 227, 228 LED 139 Sensor-Pins 145, 146 Störungsanalyse/-beseitigung 138

D

Dämpfung 81 Störungsanalyse/-beseitigung 127 Dezimalschreibweise 238 Dichte Abschaltung 85 Messeinheiten konfigurieren 57 Liste 61

Stichwortverzeichnis

Display alarm menu 90 Dezimale 99 Genauigkeit 99 Hilfsmittel für die intelligente Systemverifizierung 39 Hintergrundbeleuchtung 91 off-line menu 90 Passwort 91,96 Scroll Rate 93 Sprache 100 Update Period 94 Variablen 99 Verwenden der Displaymenüs 237 Dokumentation 2 Druck Messeinheiten konfigurieren 57 Liste 62 Druckkompensation 10 aktivieren 11 Definition 10 Druckkorrekturfaktoren 11 Druckquelle 12 Werte 11 Durchflusskalibrierdruck 11

Ε

Einheiten 57 Exponentialschreibweise 239 Externe Druckkompensation *Siehe* Druckkompensation Externe Temperaturkompensation *Siehe* Temperaturkompensation

F

Fehleralarme 79 Feldbus-Host 2 Flansch 89 Function Block Kanäle 6

G

Gas Wizard 55, 56 Gas-Standardvolumen 54 Abschaltung 85 Gas Wizard 55, 56 Konfigurieren der Gasdichte 55 Messeinheiten konfigurieren 57 Genauigkeit (des Displays) 99 Gerätebeschreibungen 2, 229 Geräteeinstellungen 88 Gerätefaktoren 43 Konfiguration 43 Gesamtzähler Anzeigen der Werte 115 Definition 115 Messeinheiten 57 Parameternamen 115 starten und stoppen 117 zurücksetzen 117

Η

Handterminal 1, 2, 229 Beispiel - Anschluss in der Anlage 230 Beispiel - Anschluss zu Prüfzwecken 230 *Siehe* Handterminal Hintergrundbeleuchtung (Display) 91 Hysterese 78

I

Ignorieren Alarme 79 Informative Alarme 79 Installationsarten 224 INT Function Block Mode 9 resetting 9 Intelligente Systemverifizierung 23, 24 Ergebnisse 36 Hilfsmittel für die Anzeige 39 ProLink II Hilfsmittel 37 Vorgehensweise 30 Zeitplan 41 ISA-Konfigurationsdatenblatt 3

K

Kalibrierung 23, 24 Nullpunkt *Siehe* Nullpunktkalibrierung Störungsanalyse/-beseitigung 122, 127, 129 Vorgehensweise zur Dichtekalibrierung 24, 45 Vorgehensweise zur Temperaturkalibrierung 24, 51 Kanäle 6 Kennzeichnung 88 Konfigurationsdateien (ProLink II) 232 Konfigurationsdatenblatt 3 Kundenservice 3

L LED

Core-Prozessor 139 Status 112 Linearisierung 74 Störungsanalyse/-beseitigung 128

М

Massendurchfluss Abschaltung 85 Messeinheiten konfigurieren 57 Liste 59 Messeinheiten 57 Micro Motion Kundenservice 3

Ν

Nullpunktkalibrierung 16 Störungsanalyse/-beseitigung 122, 129, 130 Vorgehensweise 17 Wiederherstellen des Nullpunkts 20

0

Off-line menu 90 Offline-Menü Passwort 91, 96, 237 Optische Taste 235 Scroll 117, 235 Select 117, 235 Out-of-Service-Modus 2

Ρ

Parameter Flow Direction 87 Passwort 91, 96, 237 PlantWeb-Alarme 149 AI / AO Block Status 157 Definition 149 setzen 149 verwenden 152 Prioritäten Alarmprioritäten 77 ProLink II 2, 231 Alarmprotokoll 114, 115 Anforderungen 231 Anschluss an eine Auswerteelektronik 232 Hilfsmittel für die intelligente Systemverifizierung 37 Konfigurationsdateien 232 Sprache 234 Version 2, 231 Prozessalarme 76 ansehen 111 Hysterese 78 Prioritäten 77 reagieren auf 111 Werte zuordnen 77

Prozessvariablen Anzeigen von Werten 107 Kanäle 6 Störungsanalyse/-beseitigung 123

R

Revisionshistorie 243

S

Schreibschutz-Modus 102 Schwallströmung 84 Dauer 84 Definition 84 Grenzen 84 Störungsanalyse/-beseitigung 134 Scroll (optische Taste) 117, 235 Scroll Rate 93 Select (optische Taste) 117, 235 Sensorparameter 89 Sensorwerkstoff 89 Seriennummer 89 Serviceport 232 Sicherheit 1 Simulationsmodus 109 Feldbus 110 Sensor 110 Software-Historie 243 Software-Kennzeichnung 88 Sprache auf dem Display 236 verwendet von ProLink II 234 Statusalarme ansehen 111 bestätigen 90, 113, 114 Code 128 reagieren auf 111 Störungsanalyse/-beseitigung 128 Stufe 79 Status-LED 112 Stufe von Alarmen 79 Summenzähler Anzeigen der Werte 115 Definition 115 Messeinheiten 57 Parameternamen 115 starten und stoppen 117 zurücksetzen 117 Systemvalidierung 23, 24, 43 Systemverifizierung Siehe Intelligente Systemverifizierung 24

249

Stichwortverzeichnis

Т

Tasten *Siehe* Optische Taste Temperatur Messeinheiten konfigurieren 57 Liste 62 Temperaturkompensation 14 aktivieren 14 Temperaturquelle 15 Transducer Blocks Kanäle 6 Referenz 159

U

Update Period (Display) 94

V

Variablen Anzeigen von Werten 107 Verdrahtungsprobleme 132 Volumendurchfluss Abschaltung 85 Messeinheiten konfigurieren 57 Liste 60 Voreingestellte Werte 160–200, 204–207 Vorgehensweise zur Dichtekalibrierung 24, 45 Vorgehensweise zur Temperaturkalibrierung 24, 51 Vorheriger Nullpunkt 20

W

Werksseitiger Nullpunkt 20 Wiederherstellen der Werkskonfiguration 134 Wiederherstellen des Nullpunkts 20

©2012, Micro Motion, Inc. Alle Rechte vorbehalten. P/N 3600209, Rev. EB

Die neuesten Micro Motion Produktinformationen finden Sie unter PRODUKTE auf unserer Website www.micromotion.com

Europa

Emerson Process Management Neonstraat 1 6718 WX Ede Niederlande T +31 (0) 318 495 610 F +31 (0) 318 495 629 www.emersonprocess.nl

Deutschland

Emerson Process Management GmbH & Co OHG Argelsrieder Feld 3 82234 Wessling Deutschland T +49 (0) 8153 939 - 0 F +49 (0) 8153 939 - 172 www.emersonprocess.de

Schweiz

Emerson Process Management AG Blegistraße 21 6341 Baar-Walterswil Schweiz T +41 (0) 41 768 6111 F +41 (0) 41 761 8740 www.emersonprocess.ch

Österreich

Emerson Process Management AG Industriezentrum NÖ Süd Straße 2a, Objekt M29 2351 Wr. Neudorf Österreich T +43 (0) 2236-607 F +43 (0) 2236-607 44 www.emersonprocess.at

